scholarly journals LINC00084/miR-204/ZEB1 Axis Mediates Myofibroblastic Differentiation Activity in Fibrotic Buccal Mucosa Fibroblasts: Therapeutic Target for Oral Submucous Fibrosis

2021 ◽  
Vol 11 (8) ◽  
pp. 707
Author(s):  
Yu-Hsien Lee ◽  
Yi-Wen Liao ◽  
Ming-Yi Lu ◽  
Pei-Ling Hsieh ◽  
Cheng-Chia Yu

Oral submucosal fibrosis (OSF) is a precancerous condition in the oral cavity and areca nut consumption has been regarded as one of the etiologic factors implicated in the development of OSF via persistent activation of buccal mucosal fibroblasts (BMFs). It has been previously reported that an epithelial to mesenchymal transition (EMT) factor, ZEB1, mediated the areca nut-associated myofibroblast transdifferentiation. In the current study, we aimed to elucidate how areca nut affected non-coding RNAs and the subsequent myofibroblast activation via ZEB1. We found that long non-coding RNA LINC00084 was elicited in the BMFs treated with arecoline, a major alkaloid of areca nut, and silencing LINC00084 prevented the arecoline-induced activities (such as collagen gel contraction, migration, and wound healing capacities). The upregulation of LINC00084 was also observed in the OSF tissues and fibrotic BMFs (fBMFs), and positively correlated with several fibrosis factors. Moreover, we showed knockdown of LINC00084 markedly suppressed the myofibroblast features in fBMFs, including myofibroblast phenotypes and marker expression. The results from the luciferase reporter assay confirmed that LINC00084 acted as a sponge of miR-204 and miR-204 inhibited ZEB1 by directly interacting with it. Altogether, these findings suggested that the constant irritation of arecoline may result in upregulation of LINC00084 in BMFs, which increased the ZEB1 expression by sequestering miR-204 to induce myofibroblast transdifferentiation.

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1611
Author(s):  
Chih-Yu Peng ◽  
Yi-Wen Liao ◽  
Ming-Yi Lu ◽  
Chieh-Mei Yang ◽  
Pei-Ling Hsieh ◽  
...  

Oral submucosal fibrosis (OSF) is a premalignant disorder of the oral cavity, and areca nut chewing is known to be a major etiological factor that could induce epithelial to mesenchymal transition (EMT) and activate buccal mucosal fibroblasts (BMFs). However, this detailed mechanism is not fully understood. In this study, we showed that the upregulation of Snail in OSF samples and fibrotic BMFs (fBMFs) may result from constant irritation by arecoline, a major alkaloid of the areca nut. The elevation of Snail triggered myofibroblast transdifferentiation and was crucial to the persistent activation of fBMFs. Meanwhile, Snail increased the expression of numerous fibrosis factors (e.g., α-SMA and collagen I) as well as IL-6. Results from bioinformatics software and a luciferase-based reporter assay revealed that IL-6 was a direct target of Snail. Moreover, IL-6 in BMFs was found to further increase the expression of Snail and mediate Snail-induced myofibroblast activation. These findings suggested that there was a positive loop between Snail and IL-6 to regulate the areca nut-associated myofibroblast transdifferentiation, which implied that the blockage of Snail may serve as a favorable therapeutic strategy for OSF treatment.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


2020 ◽  
Author(s):  
Yuxin Zhao ◽  
Zhaoxia Wang ◽  
Meili Gao ◽  
Xuehong Wang ◽  
Hui Feng ◽  
...  

Abstract Background: Long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB.Methods: The levels of MALAT1, microRNA-655-3p (miR-655-3p), and ATPase family AAA domain containing 2 (ATAD2) in RB tissues and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were monitored via cell counting kit 8 (CCK8) assay and flow cytometry, respectively. The protein levels of p21, CyclinD1, B-cell lymphoma-2 (Bcl-2), cleaved-casp-3, E-cadherin, Ncadherin, Vimentin, and ATAD2 were detected by Western blot assay. Transwell assay was performed to estimate the abilities of migration and invasion. The interactions between miR-655-3p and MALAT1 or ATAD2 were predicted by starBase. Dual-luciferase reporter assay was constructed to verify these interactions. The mice model experiments were established to validate the effects of MALAT1 in vivo.Results: MALAT1and ATAD2 were significantly increased while the level of miR-655-3p was remarkably decreased in RB tissues and cells. MALAT1 knockdown inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT) but promoted apoptosis via miR-655-3p in vitro, and blocked xenograft tumor growth in vivo. MALAT1 was validated to sponge miR-655-3p and ATAD2 was verified as a candidate of miR-655-3p. MiR-655-3p overexpression inhibited cell proliferation but promoted apoptosis by targeting ATAD2. MALAT1 silencing affected cell behaviors by regulating ATAD2. MALAT1 depletion down-regulated ATAD2 expression via miR-655-3p in RB cells.Conclusion: MALAT1 positively regulated ATAD2 to accelerate cell proliferation but retard apoptosis by sponging miR-655-3p in RB cells.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramkrishna Mitra ◽  
Xi Chen ◽  
Evan J. Greenawalt ◽  
Ujjwal Maulik ◽  
Wei Jiang ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1802 ◽  
Author(s):  
Qi-Yuan Huang ◽  
Guo-Feng Liu ◽  
Xian-Ling Qian ◽  
Li-Bo Tang ◽  
Qing-Yun Huang ◽  
...  

As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document