scholarly journals The Potential of Hsp90 in Targeting Pathological Pathways in Cardiac Diseases

2021 ◽  
Vol 11 (12) ◽  
pp. 1373
Author(s):  
Richard J. Roberts ◽  
Logan Hallee ◽  
Chi Keung Lam

Heat shock protein 90 (Hsp90) is a molecular chaperone that interacts with up to 10% of the proteome. The extensive involvement in protein folding and regulation of protein stability within cells makes Hsp90 an attractive therapeutic target to correct multiple dysfunctions. Many of the clients of Hsp90 are found in pathways known to be pathogenic in the heart, ranging from transforming growth factor β (TGF-β) and mitogen activated kinase (MAPK) signaling to tumor necrosis factor α (TNFα), Gs and Gq g-protein coupled receptor (GPCR) and calcium (Ca2+) signaling. These pathways can therefore be targeted through modulation of Hsp90 activity. The activity of Hsp90 can be targeted through small-molecule inhibition. Small-molecule inhibitors of Hsp90 have been found to be cardiotoxic in some cases however. In this regard, specific targeting of Hsp90 by modulation of post-translational modifications (PTMs) emerges as an attractive strategy. In this review, we aim to address how Hsp90 functions, where Hsp90 interacts within pathological pathways, and current knowledge of small molecules and PTMs known to modulate Hsp90 activity and their potential as therapeutics in cardiac diseases.

Author(s):  
Theresia Indah Budhy ◽  
Ira Arundina ◽  
Meircurius Dwi Condro Surboyo ◽  
Anisa Nur Halimah

Abstract Objectives The purpose of this study is to analyze the effects of rice husk liquid smoke in Porphyromonas gingivalis-induced periodontitis in the inflammatory and proliferation marker such as nuclear factor kappa β (NF-kB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), fibroblast growth factor 2 (FGF2), collagen type 1 (COL-1) expression, and the number of macrophages, lymphocytes, and fibroblasts. Materials and Methods Rice husk liquid smoke is obtained by the pyrolysis process. Porphyromonas gingivalis-induced periodontitis in 20 μL phosphate-buffered saline containing 1 × 109 CFU was injected into the lower anterior gingival sulcus of Wistar rats. The periodontitis was then treated with 20 μL/20 g body weight of rice husk liquid smoke once a day for 2 and 7 days, respectively. After treatment, the bone and lower anterior gingival sulcus were analyzed with immunohistochemistry and hematoxylin–eosin staining. Results The treatment of periodontitis with rice husk liquid smoke showed a lower NF-kB, TNF-α, and IL-6 expression and a higher TGF-β, FGF2, and COL-1 expression than the control after treatment for 2 and 7 days (p < 0.05), respectively. The number of macrophages and fibroblasts was also higher when compared with the control group (p < 0.05), but the number of lymphocytes was lower than the control (p < 0.05). Conclusion Rice husk liquid smoke showed its effects on Porphyromonas gingivalis-induced periodontitis with a decrease in inflammatory markers and an increase in proliferation markers. The development of a rice husk liquid smoke periodontitis treatment is promising.


2014 ◽  
Vol 6 (245) ◽  
pp. 245ra93-245ra93 ◽  
Author(s):  
Vincent Favaudon ◽  
Laura Caplier ◽  
Virginie Monceau ◽  
Frédéric Pouzoulet ◽  
Mano Sayarath ◽  
...  

In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤500 ms) of radiation delivered at ultrahigh dose rate (≥40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc+ orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor–β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor–α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.


2001 ◽  
Vol 86 (12) ◽  
pp. 1563-1572 ◽  
Author(s):  
Yan Chen ◽  
Joanne Sloan-Lancaster ◽  
David Berg ◽  
Mark Richardson ◽  
Brian Grinnell ◽  
...  

SummaryPlasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (SERPIN) specific for tissue-type and urokinase-like plasminogen activators. High plasma PAI-1 activity is a risk factor for thrombotic diseases. Due to the short half-life of PAI-1, regulation of PAI-1 gene expression and secretion of active PAI-1 into the blood stream is important for hemostatic balance. We have investigated transcriptional control of PAI-1 gene expression in bovine aortic endothelial cells (BAECs) and human cell lines using PAI-1 5’ promoter-luciferase reporter assays. Contrary to the cytokine-induced up-regulation of PAI-1 mRNA and protein levels, we found that only transforming growth factor-β (TGF-β) was efficient in inducing PAI-1 promoter activation. Tissue necrosis factor-α (TNF-α) induced a small luciferase activity with the 2.5 kb PAI-1 promoter, but not with the PAI-800/4G/5G and p3TP-lux promoters. Next we investigated whether a lack of response to TNF-α was due to deficient signaling pathways. BAECs responded to TNF-α with robust NFκB promoter activation. TGF-β activated the p38 MAP kinase, while TNF-α activated both the SAPK/JNK and p38 MAP kinases. The ERK1/2 MAP kinases were constitutively activated in BAECs. BAEC therefore responded to TNF-α stimulation with activation of the MAP kinases and the NFκB transcriptional factors. We further measured the messenger RNA stability under the influence by TGF-β and TNF-α and found no difference. PAI-1 gene activation by TNF-α apparently is yet to be defined for the location of the response element and/or the signaling pathway, while TGF-β is the most important cytokine for PAI-1 transcriptional activation through its 5’ proximal promoter.


2001 ◽  
Vol 90 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Jeffrey D. Hasday ◽  
Douglas Bannerman ◽  
Sirhan Sakarya ◽  
Alan S. Cross ◽  
Ishwar S. Singh ◽  
...  

Fever is an important regulator of inflammation that modifies expression and bioactivity of cytokines, including tumor necrosis factor (TNF)-α. Pulmonary vascular endothelium is an important target of TNF-α during the systemic inflammatory response. In this study, we analyzed the effect of a febrile range temperature (39.5°C) on TNF-α-stimulated changes in endothelial barrier function, capacity for neutrophil binding and transendothelial migration (TEM), and cytokine secretion in human pulmonary artery endothelial cells (EC). Permeability for [14C]BSA tracer was increased by treatment with TNF-α, and this effect was augmented by incubating EC at 39.5°C. Treating EC with 2.5 U/ml TNF-α stimulated an increase in subsequent neutrophil adherence and TEM. Incubating EC at 39.5°C caused a 30% increase in TEM but did not modify the enhancement of neutrophil adherence or TEM by TNF-α treatment. Analysis of cytokine expression in EC cultures exposed to TNF-α at either 37° or 39.5°C revealed three patterns of temperature and TNF-α responsiveness. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-8 were not detectable in untreated EC but were increased after TNF-α exposure, and this increase was enhanced at 39.5°C. IL-6 expression was also increased with TNF-α exposure, but IL-6 expression was lower in 39.5°C EC cultures. Transforming growth factor-β1was constitutively expressed, and its expression was not influenced either by TNF-α or exposure to 39.5°C. These data demonstrate that clinically relevant shifts in body temperature might cause important changes in the effects of proinflammatory cytokines on the endothelium.


2009 ◽  
Vol 133 (8) ◽  
pp. 1215-1218
Author(s):  
Michelle B. Crosby ◽  
G. Baker Hubbard ◽  
Brenda L. Gallie ◽  
Hans E. Grossniklaus

Abstract Retinoblastoma is the most common primary intraocular tumor of childhood and may be heritable or occur sporadically. Anterior diffuse retinoblastoma is an uncommon variant that is thought to be sporadic. We describe a child with anterior diffuse retinoblastoma who presented with a pseudohypopyon. Genetic analysis showed a germline mutation of the RB1 allele that is potentially heritable. Immunofluorescence staining was positive for transforming growth factor β and for vascular endothelial growth factor and negative for inducible nitric oxide synthase and for hypoxia inducible factor α in the tumor seeds, indicating acquisition of nonischemia-mediated survival factors of the tumor seeds in the aqueous humor.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alison E. John ◽  
Rebecca H. Graves ◽  
K. Tao Pun ◽  
Giovanni Vitulli ◽  
Ellen J. Forty ◽  
...  

Abstract The αvβ6 integrin plays a key role in the activation of transforming growth factor-β (TGFβ), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvβ6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvβ6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFβ signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvβ6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvβ6, induces prolonged inhibition of TGFβ signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.


2000 ◽  
Vol 14 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Markus Bitzer ◽  
Gero von Gersdorff ◽  
Dan Liang ◽  
Alfredo Dominguez-Rosales ◽  
Amer A. Beg ◽  
...  

A number of pathogenic and proinflammatory stimuli, and the transforming growth factor-β (TGF-β) exert opposing activities in cellular and immune responses. Here we show that the RelA subunit of nuclear factor κB (NF-κB/RelA) is necessary for the inhibition of TGF-β-induced phosphorylation, nuclear translocation, and DNA binding of SMAD signaling complexes by tumor necrosis factor-α (TNF-α). The antagonism is mediated through up-regulation of Smad7 synthesis and induction of stable associations between ligand-activated TGF-β receptors and inhibitory Smad7. Down-regulation of endogenous Smad7 by expression of antisense mRNA releases TGF-β/SMAD-induced transcriptional responses from suppression by cytokine-activated NF-κB/RelA. Following stimulation with bacterial lipopolysaccharide (LPS), or the proinflammatory cytokines TNF-α and interleukin-1β (IL-1β, NF-κB/RelA induces Smad7 synthesis through activation of Smad7 gene transcription. These results suggest a mechanism of suppression of TGF-β/SMAD signaling by opposing stimuli mediated through the activation of inhibitory Smad7 by NF-κB/RelA.


Sign in / Sign up

Export Citation Format

Share Document