scholarly journals Dynamic Bankruptcy Prediction Models for European Enterprises

2019 ◽  
Vol 12 (4) ◽  
pp. 185 ◽  
Author(s):  
Tomasz Korol

This manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and multilayer artificial neural network, and decision trees. Such a research approach will answer the question of whether changes in indicators are relevant predictors of a company’s coming financial crisis because declines or increases in values do not immediately indicate that the company’s economic situation is deteriorating. The research relies on two samples of firms—the learning sample of 50 bankrupt and 50 non-bankrupt enterprises and the testing sample of 250 bankrupt and 250 non-bankrupt firms.

Author(s):  
Easwaran Iyer ◽  
Vinod Kumar Murti

Logistic Regression is one of the popular techniques used for bankruptcy prediction and its popularity is attributed due to its robust nature in terms of data characteristics. Recent developments have explored Artificial Neural Networks for bankruptcy prediction. In this study, a paired sample of 174 cases of Indian listed manufacturing companies have been used for building bankruptcy prediction models based on Logistic Regression and Artificial Neural Networks. The time period of study was year 2000 through year 2009. The classification accuracies have been compared for built models and for hold-out sample of 44 paired cases. In analysis and hold-out samples, both the models have shown appreciable classification results, three years prior to bankruptcy. Thus, both the models can be used (by banks, SEBI etc.) for bankruptcy prediction in Indian Context, however, Artificial Neural Network has shown marginal supremacy over Logistic Regression.


Author(s):  
Matsumaru Masanobu ◽  
KANEKO SHOICHI ◽  
Katagiri Hideki ◽  
Kawanaka Takaaki

This study predicted the bankruptcy risk of companies listed in Japanese stock markets for the entire industry and individual industries using multiple discriminant analysis (MDA), artificial neural network (ANN), and support vector machine (SVM) and compared the methods to determine the best one. The financial statements of the companies listed in the Tokyo Stock Exchange in Japan were used as data. The data of 244 companies that went bankrupt between 1991 and 2015 were used. Additionally, the data of 64,708 companies that did not go bankrupt between 1991 and 2015 (24 years) were used. The data was acquired from the Nikkei NEEDS database. It was found from the results of empirical analysis that the SVM is more accurate than the other models in predicting the bankruptcy risk of companies. In the ANN analysis and MDA, bankruptcy prediction could be made accurately only for some individual industries. In contrast, the SVM could predict the bankruptcy risk of companies almost perfectly for either entire and individual industries. This bankruptcy prediction model can help customers, investors, and financiers prevent losses by focusing on the financial indicators before finalizing transactions.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Nagoor Basha Shaik ◽  
Kedar Mallik Mantrala ◽  
Balaji Bakthavatchalam ◽  
Qandeel Fatima Gillani ◽  
M. Faisal Rehman ◽  
...  

AbstractThe well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants.


2020 ◽  
Author(s):  
Hamza Turabieh ◽  
Alaa Sheta ◽  
Malik Braik ◽  
Elvira Kovač-Andrić

To fulfill the national air quality standards, many countries have created emissions monitoring strategies on air quality. Nowadays, policymakers and air quality executives depend on scientific computation and prediction models to monitor that cause air pollution, especially in industrial cities. Air pollution is considered one of the primary problems that could cause many human health problems such as asthma, damage to lungs, and even death. In this study, we present investigated development forecasting models for air pollutant attributes including Particulate Matters (PM2.5, PM10), ground-level Ozone (O3), and Nitrogen Oxides (NO2). The dataset used was collected from Dubrovnik city, which is located in the east of Croatia. The collected data has missing values. Therefore, we suggested the use of a Layered Recurrent Neural Network (L-RNN) to impute the missing value(s) of air pollutant attributes then build forecasting models. We adopted four regression models to forecast air pollutant attributes, which are: Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Artificial Neural Network (ANN) and L-RNN. The obtained results show that the proposed method enhances the overall performance of other forecasting models.


Author(s):  
G. A. Rekha Pai ◽  
G. A. Vijayalakshmi Pai

Industrial bankruptcy is a rampant problem which does not occur overnight and when it occurs can cause acute financial embarrassment to Governments and financial institutions as well as threaten the very viability of the firms. It is therefore essential to help industries identify the impending trouble early. Several statistical and soft computing based bankruptcy prediction models that make use of financial ratios as indicators have been proposed. Majority of these models make use of a selective set of financial ratios chosen according to some appropriate criteria framed by the individual investigators. In contrast, this study considers any number of financial ratios irrespective of the industrial category and size and makes use of Principal Component Analysis to extract their principal components, to be used as predictors, thereby dispensing with the cumbersome selection procedures used by its predecessors. An Evolutionary Neural Network (ENN) and a Backpropagation Neural Network with Levenberg Marquardt’s training rule (BPN) have been employed as classifiers and their performance has been compared using Receiver Operating Characteristics (ROC) analyses. Termed PCA-ENN and PCA-BPN models, the predictive potential of the two models have been analyzed over a financial database (1997-2000) pertaining to 34 sick and 38 non sick Indian manufacturing companies, with 21 financial ratios as predictor variables.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 164 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Nadeem Javaid ◽  
Abdul Mateen ◽  
Muhammad Awais ◽  
Zahoor Ali Khan

Daily operations and planning in a smart grid require a day-ahead load forecasting of its customers. The accuracy of day-ahead load-forecasting models has a significant impact on many decisions such as scheduling of fuel purchases, system security assessment, economic scheduling of generating capacity, and planning for energy transactions. However, day-ahead load forecasting is a challenging task due to its dependence on external factors such as meteorological and exogenous variables. Furthermore, the existing day-ahead load-forecasting models enhance forecast accuracy by paying the cost of increased execution time. Aiming at improving the forecast accuracy while not paying the increased executions time cost, a hybrid artificial neural network-based day-ahead load-forecasting model for smart grids is proposed in this paper. The proposed forecasting model comprises three modules: (i) a pre-processing module; (ii) a forecast module; and (iii) an optimization module. In the first module, correlated lagged load data along with influential meteorological and exogenous variables are fed as inputs to a feature selection technique which removes irrelevant and/or redundant samples from the inputs. In the second module, a sigmoid function (activation) and a multivariate auto regressive algorithm (training) in the artificial neural network are used. The third module uses a heuristics-based optimization technique to minimize the forecast error. In the third module, our modified version of an enhanced differential evolution algorithm is used. The proposed method is validated via simulations where it is tested on the datasets of DAYTOWN (Ohio, USA) and EKPC (Kentucky, USA). In comparison to two existing day-ahead load-forecasting models, results show improved performance of the proposed model in terms of accuracy, execution time, and scalability.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Yajiao Tang ◽  
Junkai Ji ◽  
Yulin Zhu ◽  
Shangce Gao ◽  
Zheng Tang ◽  
...  

Financial bankruptcy prediction is crucial for financial institutions in assessing the financial health of companies and individuals. Such work is necessary for financial institutions to establish effective prediction models to make appropriate lending decisions. In recent decades, various bankruptcy prediction models have been developed for academics and practitioners to predict the likelihood that a loan customer will go bankrupt. Among them, Artificial Neural Networks (ANNs) have been widely and effectively applied in bankruptcy prediction. Inspired by the mechanism of biological neurons, we propose an evolutionary pruning neural network (EPNN) model to conduct financial bankruptcy analysis. The EPNN possesses a dynamic dendritic structure that is trained by a global optimization learning algorithm: the Adaptive Differential Evolution algorithm with Optional External Archive (JADE). The EPNN can reduce the computational complexity by removing the superfluous and ineffective synapses and dendrites in the structure and is simultaneously able to achieve a competitive classification accuracy. After simplifying the structure, the EPNN can be entirely replaced by a logic circuit containing the comparators and the logic NOT, AND, and OR gates. This mechanism makes it feasible to apply the EPNN to bankruptcy analysis in hardware implementations. To verify the effectiveness of the EPNN, we adopt two benchmark datasets in our experiments. The experimental results reveal that the EPNN outperforms the Multilayer Perceptron (MLP) model and our previously developed preliminary pruning neural network (PNN) model in terms of accuracy, convergence speed, and Area Under the Receiver Operating Characteristics (ROC) curve (AUC). In addition, the EPNN also provides competitive and satisfactory classification performances in contrast with other commonly used classification methods.


Sign in / Sign up

Export Citation Format

Share Document