scholarly journals Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 364
Author(s):  
Jayan D. M. Senevirathna ◽  
Shuichi Asakawa

Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.

Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3078
Author(s):  
Irina A. Guschina ◽  
Natalia Ninkina ◽  
Andrei Roman ◽  
Mikhail V. Pokrovskiy ◽  
Vladimir L. Buchman

Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson’s disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1740
Author(s):  
Yuning Pang ◽  
Xiang Xu ◽  
Xiaojun Xiang ◽  
Yongnan Li ◽  
Zengqi Zhao ◽  
...  

A high-fat diet often leads to excessive fat deposition and adversely affects the organism. However, the mechanism of liver fat deposition induced by high fat is still unclear. Therefore, this study aimed at acetyl-CoA carboxylase (ACC) to explore the mechanism of excessive liver deposition induced by high fat. In the present study, the ORF of ACC1 and ACC2 were cloned and characterized. Meanwhile, the mRNA and protein of ACC1 and ACC2 were increased in liver fed with a high-fat diet (HFD) or in hepatocytes incubated with oleic acid (OA). The phosphorylation of ACC was also decreased in hepatocytes incubated with OA. Moreover, AICAR dramatically improved the phosphorylation of ACC, and OA significantly inhibited the phosphorylation of the AMPK/ACC pathway. Further experiments showed that OA increased global O-GlcNAcylation and agonist of O-GlcNAcylation significantly inhibited the phosphorylation of AMPK and ACC. Importantly, the disorder of lipid metabolism caused by HFD or OA could be rescued by treating CP-640186, the dual inhibitor of ACC1 and ACC2. These observations suggested that high fat may activate O-GlcNAcylation and affect the AMPK/ACC pathway to regulate lipid synthesis, and also emphasized the importance of the role of ACC in lipid homeostasis.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Felix Clemens Richter ◽  
Aljawharah Alrubayyi ◽  
Alicia Teijeira Crespo ◽  
Sarah Hulin-Curtis ◽  

Abstract The role of obesity in the pathophysiology of respiratory virus infections has become particularly apparent during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, where obese patients are twice as likely to suffer from severe coronavirus disease 2019 (COVID-19) than healthy weight individuals. Obesity results in disruption of systemic lipid metabolism promoting a state of chronic low-grade inflammation. However, it remains unclear how these underlying metabolic and cellular processes promote severe SARS-CoV-2 infection. Emerging data in SARS-CoV-2 and Influenza A virus (IAV) infections show that viruses can further subvert the host’s altered lipid metabolism and exploit obesity-induced alterations in immune cell metabolism and function to promote chronic inflammation and viral propagation. In this review, we outline the systemic metabolic and immune alterations underlying obesity and discuss how these baseline alterations impact the immune response and disease pathophysiology. A better understanding of the immunometabolic landscape of obese patients may aid better therapies and future vaccine design.


2001 ◽  
Vol 29 (2) ◽  
pp. 237-240
Author(s):  
R. D. Evans ◽  
M. Stubbs ◽  
G. F. Gibbons ◽  
E. A. Newsholme

Derek Williamson's scientific career spanned the ‘Golden Age’ of research into metabolic regulation, to which he made an important and sustained contribution. Derek joined Hans Krebs' laboratory at Sheffield University in 1946 and moved to Krebs' MRC Unit in Oxford in 1960. He elaborated an enzymic method for the determination of acetoacetate and 3-hydroxybutyrate [Williamson, Mellanby and Krebs, Biochem. J. (1962) 82, 90–96], which opened up the field of ketone body metabolism and its regulation and became a Citation Classic. Another Citation Classic followed [Williamson, Lund and Krebs, Biochem. J. (1967) 103, 514–527]. He moved with Krebs to the Metabolic Research Laboratory at the Radcliffe Infirmary in 1967, where he blossomed, formulating his ideas about the integrated regulation of metabolic pathways, particularly with regard to fatty acid oxidation, lipid synthesis and ketone body metabolism. His success was illustrated by more than 200 publications. Derek implanted and nurtured a sense of the excitement of scientific discovery in his colleagues and students, and he worked hard to provide a friendly, supportive and encouraging environment. Many lives have been enriched by the privilege of working with him.


2021 ◽  
Vol XXXVII (1) ◽  
pp. 89-100
Author(s):  
Dorota Kondej

This paper presents basic information on a structure and function of biological membranes. Types of biomimetic membranes modelling properties of biological membranes were introduced. The method of testing surface properties of a lipid monolayer, which is the basic type of biomimetic membranes, was described. The presented method makes it possible to evaluate the effect of nanoparticles on the surface activity of biomimetic membranes based on the determination of the surface index MA. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


Author(s):  
Mengmeng Li ◽  
Mingxia Zhu ◽  
Wenqiong Chai ◽  
Yonghui Wang ◽  
Dongmei Fan ◽  
...  
Keyword(s):  

1998 ◽  
Vol 275 (2) ◽  
pp. E300-E309 ◽  
Author(s):  
Sandra J. Peters ◽  
David J. Dyck ◽  
Arend Bonen ◽  
Lawrence L. Spriet

The effects of physiological (0, 0.1, 2.5, and 10 nM) and pharmacological (200 nM) epinephrine concentrations on resting skeletal muscle lipid metabolism were investigated with the use of incubated rat epitrochlearis (EPT), flexor digitorum brevis (FDB), and soleus (SOL) muscles. Muscles were chosen to reflect a range of oxidative capacities: SOL > EPT > FDB. The muscles were pulsed with [1-14C]palmitate and chased with [9,10-3H]palmitate. Incorporation and loss of the labeled palmitate from the triacylglycerol pool (as well as mono- and diacylglycerol, phospholipid, and fatty acid pools) permitted the simultaneous estimation of lipid hydrolysis and synthesis. Endogenous and exogenous fat oxidation was quantified by14CO2and3H2O production, respectively. Triacylglycerol breakdown was elevated above control at all epinephrine concentrations in the oxidative SOL muscle, at 2.5 and 200 nM (at 10 nM, P= 0.066) in the FDB, and only at 200 nM epinephrine in the EPT. Epinephrine stimulated glycogen breakdown in the EPT at all concentrations but only at 10 and 200 nM in the FDB and had no effect in the SOL. We further characterized muscle lipid hydrolysis potential and measured total hormone-sensitive lipase content by Western blotting (SOL > FDB > EPT). This study demonstrated that physiological levels of epinephrine cause measurable increases in triacylglycerol hydrolysis at rest in oxidative but not in glycolytic muscle, with no change in the rate of lipid synthesis or oxidation. Furthermore, epinephrine caused differential stimulation of carbohydrate and fat metabolism in glycolytic vs. oxidative muscle. Epinephrine preferentially stimulated glycogen breakdown over triacylglycerol hydrolysis in the glycolytic EPT muscle. Conversely, in the oxidative SOL muscle, epinephrine caused an increase in endogenous lipid hydrolysis over glycogen breakdown.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Michał Waszczykowski ◽  
Michał Polguj ◽  
Jarosław Fabiś

The aim of this study was to evaluate the impact of arthroscopic capsular release in patients with primary frozen shoulder on muscular strength of nonaffected and treated shoulder after at least two-year follow-up after the surgery. The assessment included twenty-seven patients, who underwent arthroscopic capsular release due to persistent limitation of range of passive and active motion, shoulder pain, and limited function of upper limb despite 6-month conservative treatment. All the patients underwent arthroscopic superior, anteroinferior, and posterior capsular release. After at least two-year follow-up, measurement of muscular strength of abductors, flexors, and external and internal rotators of the operated and nonaffected shoulder, as well as determination of range of motion (ROM) and function (ASES) in the operated and nonaffected shoulder, was performed. Measurement of muscular strength in the patient group did not reveal statistically significant differences between operated and nonaffected shoulder. The arthroscopic capsular release does not have significant impact on the decrease in the muscular strength of the operated shoulder.


Sign in / Sign up

Export Citation Format

Share Document