scholarly journals On Analyzing Capnogram as a Novel Method for Screening COVID-19: A Review on Assessment Methods for COVID-19

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1101
Author(s):  
M. B. Malarvili ◽  
Mushikiwabeza Alexie ◽  
Nadhira Dahari ◽  
Anhar Kamarudin

In November 2019, the novel coronavirus disease COVID-19 was reported in Wuhan city, China, and was reported in other countries around the globe. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Strategies such as contact tracing and a vaccination program have been imposed to keep COVID-19 under control. Furthermore, a fast, noninvasive and reliable testing device is needed urgently to detect COVID-19, so that contact can be isolated and ringfenced before the virus spreads. Although the reverse transcription polymerase chain reaction (RT-PCR) test is considered the gold standard method for the diagnosis of SARS-CoV-2 infection, this test presents some limitations which cause delays in detecting the disease. The antigen rapid test (ART) test, on the other hand, is faster and cheaper than PCR, but is less sensitive, and may limit SARS-CoV-2 detection. While other tests are being developed, accurate, noninvasive and easy-to-use testing tools are in high demand for the rapid and extensive diagnosis of the disease. Therefore, this paper reviews current diagnostic methods for COVID-19. Following this, we propose the use of expired carbon dioxide (CO2) as an early screening tool for SARS-CoV-2 infection. This system has already been developed and has been tested on asthmatic patients. It has been proven that expired CO2, also known as capnogram, can help differentiate between respiratory conditions and, therefore, could be used to detect SARS-CoV-2 infection, as it causes respiratory tract-related diseases.

2020 ◽  
Vol 3 (2) ◽  
pp. 177-183
Author(s):  
ISI-SENAI-CIMATEC Group

In this review article, we presented a gold-standard method to detect the SARS-CoV-2, the novel virus that is causing the COVID-19 outbreak, and the use of a computer tomography (CT) method to detect the complications of the disease. We showed the controversial analysis about which method is the best to detect the disease earlier due to the COVID-19 complications. We searched the articles in the main database (PubMed/Medline, Elsevier Science Direct, Scopus, Isi Web of Science, Embase, Excerpta Medica, UptoDate, Lilacs, Novel Coronavirus Resource Directory from Elsevier), in the high-impact international scientific Journals (Scimago Journal and Country Rank - SJR - and Journal Citation Reports - JCR), such as The Lancet, Science, Nature, The New England Journal of Medicine, Physiological Reviews, Journal of the American Medical Association, Plos One, Journal of Clinical Investigation, and in the data from Center for Disease Control (CDC), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID) and World Health Organization (WHO). We prior selected meta-analysis, systematic reviews, article reviews, and original articles in this order. We reviewed 96 articles and used 45 from March to June 2020, using the terms coronavirus, SARS-CoV-2, novel coronavirus, Wuhan coronavirus, severe acute respiratory syndrome, 2019-nCoV, 2019 novel coronavirus, n-CoV-2, covid, n-SARS-2, COVID-19, corona virus, coronaviruses, RT-PCR, computer tomography (CT), diagnostic methods, with the tools MeSH (Medical Subject Headings), AND, OR, and the characters [,“,; /., to ensure the best review topics. We concluded that chest CT plays an important role in the timely detection of lung infection abnormalities in the early phase of COVID-19 infection. However, the RT-PCR is the gold standard method to detect SARS-CoV-2.  


2020 ◽  
Vol 23 (11) ◽  
pp. 794-800
Author(s):  
Mohammad Rafiee ◽  
Farahnaz Parsaei ◽  
Sajjad Rahimi Pordanjani ◽  
Vahid Amiri ◽  
Siamak Sabour

Background: The recent outbreak by a novel coronavirus originated from Wuhan, China in 2019, and is progressively spreading to other countries. Timely diagnosis of the coronavirus disease 2019 (COVID-19) improves the survival of the patients and also prevents the transmission of the infection. In this study, we reviewed the applicable and available methods for the diagnosis of COVID-19. Methods: For the review, we systematically searched Web of Science, PubMed, and Iranian articles that were published about COVID-19 diagnostic methods with a combination of the key terms: laboratory, radiological, tests, coronavirus. Results: Although the current gold standard diagnostic test for this virus is real-time reverse-transcriptase polymerase chain reaction (RT-PCR), the occasional false-negative and the low sensitivity of the test should not be underestimated. A chest computed tomography (CT) scan is another diagnostic test for COVID-19, with higher sensitivity but low specificity. A combination of sensitive RT-PCR with a chest CT scan together with the clinical features are highly recommended for the proper diagnosis. Notably, there are some other sensitive and low-cost tests for evaluation of COVID-19 infection, but their validation should be approved. Conclusion: Since early and accurate diagnosis of the viral disease could improve the survival rate of the patients, and halt the transmission chain, it is not surprising that tremendous attempts should be made to reduce the limitations of the tests leading to the false-negative results and to find a rapid test for the diagnosis of COVID-19.


Chemotherapy ◽  
2021 ◽  
pp. 1-7
Author(s):  
Marco Ciotti ◽  
Francesca Benedetti ◽  
Davide Zella ◽  
Silvia Angeletti ◽  
Massimo Ciccozzi ◽  
...  

Background: Currently, a pandemic of coronavirus disease 2019 (COVID-19) caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is underway, resulting in high morbidity and mortality across the globe. Summary: A prompt and effective diagnosis is crucial to identify infected individuals, to monitor the infection, to perform contact tracing, and to limit the spread of the virus. Since the announcement of this public health emergency, several diagnostic methods have been developed including molecular and serological assays, and more recently biosensors. Here, we present the use of these assays as well as their main technical features, advantages, and limits. Key Messages: The development of reliable diagnostic assays is crucial not only for a correct diagnosis and containment of COVID-19 pandemic, but also for the decision-making process that is behind the clinical decisions, eventually contributing to the improvement of patient management. Furthermore, with the advent of vaccine and therapeutic monoclonal antibodies against SARS-CoV-2, serological assays will be instrumental for the validation of these new therapeutic options.


2020 ◽  
Author(s):  
Helmi Zakariah ◽  
Fadzilah bt Kamaluddin ◽  
Choo-Yee Ting ◽  
Hui-Jia Yee ◽  
Shereen Allaham ◽  
...  

UNSTRUCTURED The current outbreak of coronavirus disease 2019 (COVID-19) caused by the novel coronavirus named SARS-CoV-2 has been a major global public health problem threatening many countries and territories. Mathematical modelling is one of the non-pharmaceutical public health measures that plays a crucial role for mitigating the risk and impact of the pandemic. A group of researchers and epidemiologists have developed a machine learning-powered inherent risk of contagion (IRC) analytical framework to georeference the COVID-19 with an operational platform to plan response & execute mitigation activities. This framework dataset provides a coherent picture to track and predict the COVID-19 epidemic post lockdown by piecing together preliminary data on publicly available health statistic metrics alongside the area of reported cases, drivers, vulnerable population, and number of premises that are suspected to become a transmission area between drivers and vulnerable population. The main aim of this new analytical framework is to measure the IRC and provide georeferenced data to protect the health system, aid contact tracing, and prioritise the vulnerable.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 915
Author(s):  
Irena Duś-Ilnicka ◽  
Aleksander Szymczak ◽  
Małgorzata Małodobra-Mazur ◽  
Miron Tokarski

Since the 2019 novel coronavirus outbreak began in Wuhan, China, diagnostic methods in the field of molecular biology have been developing faster than ever under the vigilant eye of world’s research community. Unfortunately, the medical community was not prepared for testing such large volumes or ranges of biological materials, whether blood samples for antibody immunological testing, or salivary/swab samples for real-time PCR. For this reason, many medical diagnostic laboratories have made the switch to working in the field of molecular biology, and research undertaken to speed up the flow of samples through laboratory. The aim of this narrative review is to evaluate the current literature on laboratory techniques for the diagnosis of SARS-CoV-2 infection available on pubmed.gov, Google Scholar, and according to the writers’ knowledge and experience of the laboratory medicine. It assesses the available information in the field of molecular biology by comparing real-time PCR, LAMP technique, RNA sequencing, and immunological diagnostics, and examines the newest techniques along with their limitations for use in SARS-CoV-2 diagnostics.


2021 ◽  
pp. 0272989X2110030
Author(s):  
Serin Lee ◽  
Zelda B. Zabinsky ◽  
Judith N. Wasserheit ◽  
Stephen M. Kofsky ◽  
Shan Liu

As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021.


2021 ◽  
Vol 13 (2) ◽  
pp. 608
Author(s):  
Ayoung Suh ◽  
Mengjun Li

This study explores how people appraise the use of contact tracing apps during the novel coronavirus (COVID-19) pandemic in South Korea. Despite increasing attention paid to digital tracing for health disasters, few studies have empirically examined user appraisal, emotion, and their continuance intention to use contact tracing apps for disaster management during an infectious disease outbreak. A mixed-method approach combining qualitative and quantitative inquiries was employed. In the qualitative study, by conducting interviews with 25 people who have used mobile apps for contact tracing, the way users appraise contact tracing apps for COVID-19 was explored. In the quantitative study, using data collected from 506 users of the apps, the interplay among cognitive appraisal (threats and opportunities) and its association with user emotion, and continuance intention was examined. The findings indicate that once users experience loss emotions, such as anger, frustration, and disgust, they are not willing to continue using the apps. App designers should consider providing technological affordances that enable users to have a sense of control over the technology so that they do not experience loss emotions. Public policymakers should also consider developing measures that can balance public health and personal privacy.


2020 ◽  
Author(s):  
Yong-Tao Li ◽  
Mei-Lian Peng ◽  
Jia-dan Fu ◽  
Li Liu ◽  
Yong-zheng Guo ◽  
...  

Abstract Objective: The novel coronavirus pneumonia (COVID-19) has spread rapidly across the globe with the movement of people. How to diagnose COVID-19 quickly and accurately is a concern for all. We retrospectively assessed the clinical characteristics of patients with COVID-19 detected by outpatient screening in areas outside Wuhan, China, to guide early screening outside the epidemic area, to isolate and treat COVID-19-positive patients, and to control the spread of this virus in the region.Results: Among the 213 patients treated in the fever clinic of our hospital, 41 tested positive for novel coronavirus (2019-nCoV) and 172 were negative. Among the positive patients, 13 (31.7%) of the patients had been to Wuhan, while 28 (68.3%) had not been to Wuhan. There were 4 cases of clustering occurrence. The main symptoms exhibited by COVID-19-positive patients were fever (87.8%), cough (68.3%), and expectoration (34.1%). The C-reactive protein (CRP) levels were increased in 35 (85.3%) positive patients; the hydroxybutyrate dehydrogenase in the myocardial zymogram was increased in 22 positive patients (53.6%) and 38 negative patients (22.1%); computed tomography (CT) findings revealed lung lesions in all 41 positive patients (100%).Conclusion: We classified the patient population and analyzed the data to understand the early clinical performance of COVID-19. Our research illustrate that screening for COVID-19 outside Wuhan should focus on early symptoms such as fever and cough, in combination with lung CT findings, epidemiological history, and sputum pathogen detection to determine whether patients need further isolation.


2021 ◽  
Author(s):  
AISDL

This paper is a preliminary step towards the assessment of an alarming widespread belief that victims of the novel coronavirus SARS-CoV-2 include the quality and accuracy of scientific publications about it. Our initial results suggest that this belief cannot be readily ignored, denied, dismissed or refuted, since some genuine supporting evidence can be forwarded for it. This evidence includes an obvious increase in retractions of papers published about the COVID-19 pandemic plus an extra-ordinary phenomenon of inconsistency that we report herein. In fact, we provide a novel method for validating any purported set of the four most prominent indicators of diagnostic testing (Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value), by observing that these indicators constitute three rather than four independent quantities. This observation has virtually been unheard of in the open medical literature, and hence researchers have not taken it into consideration. We define two functions, which serve as consistency criteria, since each of them checks consistency for any set of four numerical values (naturally belonging to the interval [0.0,1.0]) claimed to be the four basic diagnostic indicators. Most of the data we came across in various international journals met our criteria for consistency, but in a few cases, there were obvious unexplained blunders. We explored the same consistency problem for some diagnostic data published in 2020 concerning the ongoing COVID-19 pandemic and observed that the afore-mentioned unexplained blunders tended to be on the rise. A systematic extensive statistical assessment of this resumed tendency is warranted.


Sign in / Sign up

Export Citation Format

Share Document