scholarly journals Mechanical and Tribological Properties of Polytetrafluoroethylene Composites Modified by Carbon Fibers and Zeolite

Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Tatyana S. Struchkova ◽  
Andrey P. Vasilev ◽  
Aitalina A. Okhlopkova ◽  
Sakhayana N. Danilova ◽  
Aleksey G. Alekseev

Currently, lightweight and high-strength polymer composites can provide weight savings in the automotive and process equipment industries by replacing metal parts. Polytetrafluoroethylene and polymer composites based on it are used in various tribological applications due to their excellent antifriction properties and thermal stability. This article examines the effect of combined fillers (carbon fibers and zeolite) on the mechanical, tribological properties, and structure of polytetrafluoroethylene. It is shown that the introduction of combined fillers into polytetrafluoroethylene retains the tensile strength and elongation at break at a content of 1–5 wt.% of carbon fibers, the compressive stress increased by 53%, and the yield stress increased by 45% relative to the initial polymer. The wear resistance of polymer composites increased 810-fold compared to the initial polytetrafluoroethylene while maintaining a low coefficient of friction. The structural features of polymer composites are characterized by X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy.

2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors. Design/methodology/approach The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented. Findings Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases. Originality/value The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.


Friction ◽  
2020 ◽  
Author(s):  
Jin Yang ◽  
Qingfeng Xiao ◽  
Zhe Lin ◽  
Yong Li ◽  
Xiaohua Jia ◽  
...  

AbstractTo enhance the interface bonding of polyimide (PI)/carbon fiber (CF) composites, CFs were functionalized by introducing a polydopamine (PDA) transition layer, whose active groups provide absorption sites for the growth of molybdenum disulfide (MoS2) nanosheets and improve the bonding strength with PI. Uniform and dense MoS2 nanosheets with thicknesses of 30–40 nm on the surface of the PDA@CF were obtained via a subsequent hydrothermal method. As a result, the interface between the CF and the PI matrix becomes more compact with the help of the PDA transition layer and MoS2 nanosheets. This is beneficial in forming PI/CF-MoS2 composites with better thermal stability, higher tensile strength, and enhanced tribological properties. The lubricating and reinforcing effects of the hybrid CF-MoS2 in the PI composite are discussed in detail. The tensile strength of the PI/CF-MoS2 composite increases by 43%, and the friction coefficient and the wear rate reduce by 57% and 77%, respectively, compared to those of the pure PI. These values are higher than those of the PI/CF composites without MoS2 nanosheets. These results indicate that the CF-MoS2 hybrid material can be used as an additive to improve the mechanical and tribological properties of polymers.


2020 ◽  
Vol 26 ◽  
pp. 2094-2098
Author(s):  
Kartik Singh ◽  
Diptikanta Das ◽  
Ramesh Kumar Nayak ◽  
Sourav Khandai ◽  
Ramanuj Kumar ◽  
...  

2018 ◽  
Vol 31 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Yingshuang Shang ◽  
Xian Wu ◽  
Yifan Liu ◽  
Zilong Jiang ◽  
Zhaoyang Wang ◽  
...  

The high strength of multiwalled carbon nanotubes (MWCNTs) indicates promising properties for industry applications to reduce frictional coefficient and improve mechanical properties, yet few researches have referred to its structural morphology on the thermal, mechanical, and tribological properties of composites. In this work, three different lengths of MWCNTs were used to prepare polyether ether ketone (PEEK) composites and investigate the effect of structural morphology of MWCNTs on the thermal, mechanical, and tribological properties of composites. Different lengths of MWCNTs endowed PEEK composites with different thermal, mechanical, and tribological properties. On thermal and mechanical properties, the incorporation of 10–30 μm length of MWCNTs increased more the effectiveness on the crystallization rate, showing a higher crystallization temperature and the best mechanical properties of the PEEK composites. On tribological properties, approximately 50 μm MWCNTs can effectively decrease adhesive wear, which is a benefit of forming a thin transfer film, thereby effectively decreasing the coefficient of friction and improving the wear resistance.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Ph. V. Kiryukhantsev-Korneev ◽  
A. D. Sytchenko ◽  
S. A. Vorotilo ◽  
V. V. Klechkovskaya ◽  
V. Yu. Lopatin ◽  
...  

Coatings in the Ta-Zr-Si-B-C-N system were produced by magnetron sputtering of a TaSi2-Ta3B4-(Ta,Zr)B2 ceramic target in the Ar medium and Ar-N2 and Ar-C2H4 gas mixtures. The structure and composition of coatings were studied using scanning electron microscopy, glow discharge optical emission spectroscopy, energy-dispersion spectroscopy, and X-ray diffraction. Mechanical and tribological properties of coatings were determined using nanoindentation and pin-on-disk tests using 100Cr6 and Al2O3 balls. The oxidation resistance of coatings was evaluated by microscopy and X-ray diffraction after annealing in air at temperatures up to 1200 °C. The reactively-deposited coatings containing from 30% to 40% nitrogen or carbon have the highest hardness up to 29 GPa and elastic recovery up to 78%. Additionally, coatings with a high carbon content demonstrated a low coefficient of friction of 0.2 and no visible signs of wear when tested against 100Cr6 ball. All coatings except for the non-reactive ones can resist oxidation up to a temperature of 1200 °C thanks to the formation of a protective film based on Ta2O5 and SiO2 on their surface. Coatings deposited in Ar-N2 and Ar-C2H4 demonstrated superior resistance to thermal cycling in conditions 20-T−20 °C (where T = 200–1000 °C). The present article compares the structure and properties of reactive and “standard-inert atmosphere” deposited coatings to develop recommendations for optimizing the composition.


2017 ◽  
Vol 30 (6) ◽  
pp. 657-666 ◽  
Author(s):  
Fangfang Li ◽  
Ying Hu ◽  
Xiaochen Hou ◽  
Xiyu Hu ◽  
Dong Jiang

In this work, the effect of thermal, mechanical, and tribological properties of the blending system of different contents of short carbon fibers (SCFs) on different-viscosity poly-ether-ether-ketone (PEEK) was reported. The composites were manufactured using injection molding technique. Mechanical and tribological properties were measured by the tensile strength, the flexural strength, the coefficient of friction, and the wear rate. The results showed that the wear resistance and mechanical properties of the PEEK with the lower viscosity appeared on a more outstanding level, and experimental results showed that PEEK composites with added 10 wt% SCFs were optimal about the tribological behaviors and mechanical properties of the composites. Furthermore, based on scanning electron microscope inspections, the situation of the friction and worn surface of the material was explained.


Sign in / Sign up

Export Citation Format

Share Document