scholarly journals The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability

Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 117
Author(s):  
Raj Shah ◽  
Rui Chen ◽  
Mathias Woydt

Primary energy has become a vital part of society—from mobility, heating, and cooling to refrigeration to preserve food as well as for simple communication methods, such as texting. As such, pollution and environmental concerns regarding the impact of human activities have become mainstream and efforts have been made to reduce solid wastes as well as CO2 and greenhouse gas emissions. Renewable energy is almost synonymous with environmentally friendly. While energy conversion from fossil fuels and natural gases is responsible for most of the pollution (CO2, NOx, SO2, particulate matter (PM), etc.) in modern society, these processes also generated 86% of global primary energy in 2019. Furthermore, as humans become more dependent on energy, power demands will only increase with time. Material hunger represents another little perceived dependency of human prosperity. The longevity of products and goods is crucial to limit CO2eq emissions associated with material streams. This paper will focus on two relationships: that of CO2 and friction, and that of sustainability and wear protection.

2021 ◽  
Vol 2 (4) ◽  
pp. 1-1
Author(s):  
Maria Pergola ◽  
◽  
Assunta Maria Palese ◽  
Alessandro Persiani ◽  
Pasquale De Francesco ◽  
...  

The COVID-19 pandemic has drastically changed the lives of people, as well as the production and economic systems throughout the world. The flow of raw materials and products, the supply of labor and manpower, and the purchasing power have all been changed to the detriment of individual health and well-being. Such a situation requires placing even more emphasis on the search for virtuous agricultural systems compatible with the goals of economic and environmental development so clearly defined at the world level in the last decades. The present study aimed to assess the environmental and economic performance of some typical Mediterranean crops grown under different agronomical management regimes, such as strawberry, hazelnut, apricot tree, kiwifruit, peach, olive tree, and grapevine, to emphasize the importance of the mentioned issues even in the current pandemic situation. Life cycle assessment (LCA) was used to investigate the environmental profile of the studied crops, while lifecycle costing (LCC) was performed to assess and compare the economic aspects. From the environmental perspective, the hobby-organic olive systems were the most eco-friendly cropping systems, emitting 0.031 to 0.105 kg CO2eq per kg olives, while the organic hazelnut system had the greatest impact (1.001 kg of CO2eq per kg). Apricot, kiwifruit, and peach systems used N and P inputs most effectively, while strawberry systems efficiently used fossil fuels. Olive HO-2, kiwifruit, and peach cropping systems had the lowest budgets, with the costs amounted to 0.12 € kg-1 per fruit for Olive HO-2 and 0.28 € kg-1 per fruit for both kiwifruit and peach. On the contrary, organic strawberry cultivation was the most expensive (4.77 € kg-1). The variability in results due to the large differences between contexts, such as landscape, technical knowledge, and crop management, characterized the studied agricultural systems. To easily identify sustainability classes and to diminish the impact of farming practices, a considerable effort should be expended to combine LCA with LCC, C sequestration estimates, and some other useful indicators for the environmental quality evaluation.


2020 ◽  
Vol 12 (16) ◽  
pp. 6563
Author(s):  
Roque G Stagnitta ◽  
Matteo V Rocco ◽  
Emanuela Colombo

Energy balances have been historically conceived based on a supply-side perspective, providing neither detailed information about energy conversion into useful services nor the effects that may be induced by the application of policies in other sectors to energy consumption. This article proposes an approach to a thorough assessment of the impact of efficiency policies on final energy uses, focusing on residential space heating and cooling, and capable of: (1) quantifying final useful services provided and (2) accounting for the global impact of efficiency policies on final energy use, taking advantage of Input–Output analysis. This approach is applied in five cities of Argentina. Firstly, the quantity of energy service provided (i.e., level of thermal comfort) for each city is evaluated and compared with the defined target. It is found out that heating comfort is guaranteed approximately as established, whereas in the cooling case the provision is twice the established level. Secondly, primary energy consumption of heating and cooling services is evaluated before and after different efficiency improvement policies. The results show that the major primary energy saving (52%) is obtained from the upgrading appliances scenario and reflect the importance of accounting for embodied energy in goods and services involved in interventions.


2018 ◽  
Vol 10 (12) ◽  
pp. 4856 ◽  
Author(s):  
Hyung An ◽  
Jong Yoon ◽  
Young An ◽  
Eunnyeong Heo

This study analyzed the heating and cooling performance of an office building in Daegu, Korea, equipped with amorphous-Si (a-Si) building-integrated photovoltaic (BIPV) windows. EnergyPlus was used to simulate and compare the heating and cooling loads of models for clear glass double-layer, heat-absorbing glass double-layer, and low-emissivity (low-e) glass double-layer windows. In addition, the impact of changes in building operation time, temperature settings, air infiltration from the entrances, and internal load were also analyzed as these all have a large impact on heating and cooling loads. Finally, three types of heating and cooling equipment were tested, and their power and primary energy consumption analyzed, to determine the actual energy used. Under baseline conditions, there was an 18.2% reduction in heating and cooling loads when the BIPV model was used compared to when the clear glass double-layer window was used. In addition, increases in temperature settings and air infiltration from the entrances had a negative effect on the reduction of the heating and cooling loads demonstrating a need for intensive management of these features if a-Si BIPV windows are installed in a building.


2016 ◽  
Vol 70 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Milica Mladenovic ◽  
Dragoljub Dakic ◽  
Stevan Nemoda ◽  
Milijana Paprika ◽  
Mirko Komatina ◽  
...  

Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge), using different combustion technologies (fluidized bed and cigarette combustion), with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1288 ◽  
Author(s):  
Philip Shine ◽  
John Upton ◽  
Paria Sefeedpari ◽  
Michael D. Murphy

The global consumption of dairy produce is forecasted to increase by 19% per person by 2050. However, milk production is an intense energy consuming process. Coupled with concerns related to global greenhouse gas emissions from agriculture, increasing the production of milk must be met with the sustainable use of energy resources, to ensure the future monetary and environmental sustainability of the dairy industry. This body of work focused on summarizing and reviewing dairy energy research from the monitoring, prediction modelling and analyses point of view. Total primary energy consumption values in literature ranged from 2.7 MJ kg−1 Energy Corrected Milk on organic dairy farming systems to 4.2 MJ kg−1 Energy Corrected Milk on conventional dairy farming systems. Variances in total primary energy requirements were further assessed according to whether confinement or pasture-based systems were employed. Overall, a 35% energy reduction was seen across literature due to employing a pasture-based dairy system. Compared to standard regression methods, increased prediction accuracy has been demonstrated in energy literature due to employing various machine-learning algorithms. Dairy energy prediction models have been frequently utilized throughout literature to conduct dairy energy analyses, for estimating the impact of changes to infrastructural equipment and managerial practices.


2018 ◽  
Vol 45 ◽  
pp. 85-103
Author(s):  
Martin Bloemendal ◽  
Theo N. Olsthoorn

Abstract. A heat pump combined with Aquifer Thermal Energy Storage (ATES) has high potential in efficiently and sustainably providing thermal energy for space heating and cooling. This makes the subsurface, including its groundwater, of crucial importance for primary energy savings. ATES systems are often placed in aquifers in which salinity increases with depth. This is the case in coastal areas where also the demand for ATES application is high due to high degrees of urbanization in those areas. The seasonally alternating extraction and re-injection between ATES wells disturbs the preexisting ambient salinity gradient causing horizontal density gradients, which trigger buoyancy flow, which in turn affects the recovery efficiency of the stored thermal energy. This section uses analytical and numerical methods to understand and explain the impact of buoyancy flow on the efficiency of ATES in such situations, and to quantify the magnitude of this impact relative to other thermal energy losses. The results of this research show that losses due to buoyancy flow may become considerable at (a relatively large) ambient density gradients of over 0.5 kg m−3 m−1 in combination with a vertical hydraulic conductivity of more than 5 m day−1. Monowell systems suffer more from buoyancy losses than do doublet systems under similar conditions.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2925
Author(s):  
Bernard Zawada ◽  
Joanna Rucińska

The impact of thermal comfort demand on the renovation process was carried out on an optimization basis for the thermo-modernization process of an exemplary single-family home located in Warsaw. The verified TRNSYS simulation program was used to generate a set of variants of building modernization solutions. This variants set was used afterwards as a database for optimization. The analysis performed includes the internal air temperature, indicators of thermal comfort (PPD), and annual energy demand for heating and cooling, and investment costs of modernization building. The results indicated the importance of analyzing various variants of building modernization solutions. Performing modernization without analyzing its effects can have positive as well as negative consequences, e.g., achieving a significant reduction in the primary energy demands at the expense of the deteriorated thermal comfort of users. It was shown that separate analysis of indicators leads to completely different solutions and should not be recommended during modernization of single-family buildings.


2013 ◽  
Vol 24 (2) ◽  
pp. 77-82 ◽  
Author(s):  
Sosten Ziuku ◽  
Edson L. Meyer

The installation of Building Integrated Photovoltaics (BIPV) has been increasing rapidly throughout the world, yet little, if at all, has been reported in South Africa. The country has abundant solar energy resource estimated to be between 4.5 and 6.5 kWh/m2/day, yet solar energy contributes less than 1% to the country’s energy mix. More than 90% of the country’s primary energy comes from fossil fuels leading to an unsustainable per capita carbon footprint of about 9 tCO2e. Previous research has shown that photovoltaics can significantly augment the constrained fossil fuel generated electricity supply. This paper discusses the practical application of photovoltaics as a building element in energy efficient residential housing. The study also aims to determine the feasibility of implementing BIPV systems in the residential sector in South Africa. An energy efficient solar house was designed using simulation software and constructed. Ordinary solar panels were integrated onto the north facing roof of the house. A data acquisition system that monitors meteorological conditions and BIPV output was installed. It was observed that elevated back of module temperatures reaching up to 75°C on sunny days decreased module efficiency by up to 20% in the afternoon. The temperature profiles reveal that BIPV products can significantly influence indoor heating and cooling loads. The research seeks to raise awareness among housing stakeholders and solar industry policy makers of the feasibility of BIPV in South Africa.


2020 ◽  
Vol 12 (21) ◽  
pp. 8998
Author(s):  
Sebastian Czernik ◽  
Marta Marcinek ◽  
Bartosz Michałowski ◽  
Michał Piasecki ◽  
Justyna Tomaszewska ◽  
...  

Energy saving is one of the strategic challenges facing our civilization today. Without decisive actions to reduce energy consumption, it is impossible to maintain the current standard of living. Energy consumption for heating and cooling purposes is one of the primary energy consumption sources in many countries. The external thermal insulation composite system (ETICS), which is today the most widely used solution in EU countries, increases buildings’ energy efficiency. This article investigates the impact of producing cementitious adhesives, as part of ETICS with expanded polystyrene (EPS) or mineral wool (MW), on the natural environment using the cradle-to-gate life cycle assessment (LCA) method. Cementitious adhesives have a relatively low impact on most of the environmental indicators analyzed in the paper concerning other ETICS components. The paper aims to raise awareness of the importance of the environmental impact related to the production of cementitious adhesives. Knowledge of the construction products’ environmental impact is fundamental for creating reliable databases, based on which, in the future, their environmental requirements will be determined. The environmental performance of building elements is essential for the correct determination of the buildings’ sustainability.


2021 ◽  
Author(s):  
Ting Wang ◽  
Jianghua Liu ◽  
Yongqiang Xu

Abstract China’s coal-based energy structure makes its carbon peak and neutrality goals very challenging. Therefore, the optimization of the energy structure has become an important means, and exploring its influencing factors and trends has become the basis and prerequisite for the formulation of policies related to the optimization of the energy structure. This study adopts regression methods considering heteroskedasticity and cross-section correlation to study the panel data of 30 provinces in China, and obtains the changes of relationship between the fossil and non-fossil fuels consumption of different regions and their influencing factors after two global financial crises. Research results show that, China's energy consumption tends to decouple from GDP. Income structure changes especially trade changes are important factors in influencing energy consumption and energy structure. The deviation of energy resources distribution and consumption distribution tends to strengthen. The impact of urbanization development models, energy prices and efficiency shows regional heteroskedasticity.


Sign in / Sign up

Export Citation Format

Share Document