scholarly journals A Three-Phase Model Characterizing the Low-Velocity Impact Response of SMA-Reinforced Composites under a Vibrating Boundary Condition

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 7 ◽  
Author(s):  
Mengzhou Chang ◽  
Fangyun Kong ◽  
Min Sun ◽  
Jian He

Structural vibration induced by dynamic load or natural vibration is a non-negligible factor in failure analysis. Based on a vibrating boundary condition, the impact resistance of shape memory alloy (SMA)-reinforced composites was investigated. In this investigation, a modified Hashin’s failure criterion, Brinson’s model, and a visco-hyperelastic model were implemented into a numerical model to characterize the mechanical behavior of glass fiber/epoxy resin laminates, SMAs, and interphase, respectively. First, a fixed boundary condition was maintained in the simulation to verify the accuracy of the material parameters and procedures by a comparison with experimental data. Then, a series of vibrating boundaries with different frequencies and amplitudes was applied during the simulation process to reveal the effect on impact resistances. The results indicate that the impact resistance of the composite under a higher frequency or a larger amplitude is lower than that under a lower frequency or a smaller amplitude.

Author(s):  
Mengzhou Chang ◽  
Fangyun Kong ◽  
Min Sun ◽  
Jian He

Structural vibration induced by dynamic load or natural vibration is a nonnegligible factor in failure analysis. Based on vibrating boundary condition, impact resistance of shape memory alloy reinforced composites is investigated. In this investigation, modified Hashin’s failure criterion, Brinson’s model and visco-hyperelastic model are implemented into the numerical model to charactering the mechanical behavior of glass fiber/epoxy resin laminates, SMAs and interphase, respectively. First, fixed boundary condition is maintained in simulation to verify the accuracy of material parameters and procedures by comparing with experimental data. Then, a series of vibrating boundaries with different frequencies and amplitudes are applied during the simulation process to reveals the effect on impact resistances. The statistics of absorbed energy and contact force indicate that impact resistance of the composite under high frequency and large amplitude is lower than that under low frequency and small amplitude, and summarized by a mathematical expression.


2012 ◽  
Vol 445 ◽  
pp. 959-964
Author(s):  
Z. Khan ◽  
Necar Merah ◽  
A. Bazoune ◽  
S. Furquan

Low velocity drop weight impact testing of CPVC pipes was conducted on 160 mm long pipe sections obtained from 4-inch (100 mm) diameter schedule 80 pipes. Impact test were carried out for the base (as received) pipes and after their exposure to out door natural weathering conditions in Dhahran, Saudi Arabia. The results of the impact testing on the natural (outdoor exposure) broadly suggest that the natural outdoor exposures produce no change in the impact resistance of CPVC pipe material for the impact events carrying low incident energies of 10 and 20J. At the impact energies of 35 and 50J the natural outdoor exposures appear to cause appreciable degradation in the impact resistance of the CPVC pipe material. This degradation is noted only for the longer exposure periods of 12 and 18 months.


2014 ◽  
Vol 629 ◽  
pp. 503-506 ◽  
Author(s):  
Al Emran Ismail ◽  
M.A. Hassan

This paper presents the experimental investigations on the low velocity impact response of woven kenaf fiber reinforced composites. Kenaf yarns are weaved with an orientation of 00 of warp and 900 of weft to form woven kenaf mat. Three woven kenaf mats are stacked together to achieve the specified sequences. The woven stacked kenaf mats are hardened with polymeric resin and compressed to squeeze off any excessive resin and to minimize voids content. The hardened composite plates are perforated using different impact velocities. Impact responses of the composite plates are examined according to stacking sequences, impact velocities and fragmentation patterns. According to the present results, the impact strength is strongly related with the impact velocity. If higher impact velocity is used, the performances of load bearing are reduced. It is obvious that no significant features of composite fragmentations occurred from the perforated holes. However, relatively larger area of mechanical damages is found distributed around the holes, indicating the capability of composites to absorb energy effectively.


2020 ◽  
Author(s):  
Furqan Ahmad ◽  
Fethi Abbassi ◽  
Mazhar Ul-Islam ◽  
Frédéric JACQUEMIN ◽  
Jung-Wuk Hong

Abstract In order to elucidate the hygroscopic effects on impact-resistance of carbon fiber/epoxy quasi-isotropic composite plates, low-velocity impact tests are conducted on dry and hygroscopically conditioned plates, respectively, under identical configurations. For the impact tests, plates were immersed in the hot water at 80 °C to absorb a different amount of moisture content (MC). Experimental results reveal that the presence of the MC plays a pivotal role by improving the impact-resistance of composite plates. Plates with higher percentage of MC could behave elastically to a larger strain, yielding larger deflection under impact loading. From SEM fractographies, it is observed that small disbanding grows at the interface of epoxy and carbon fiber due to absorbed MC. After absorbing MC, most of impact enegy is dissipated in hygroscopic conditioned composite plates throught elastic deformation and overall less damage is induced in wet composite plates compare to the dry plate. We can postulate that the presence of MC increases the elastic limit as well as ductility of the epoxy by promoting chain segmental mobility of the polymer molecules, which eventually leads to the enhancement of the impact-resistance of wet quasi-isotropic composite plates in comparison with the dry plate.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4143
Author(s):  
Jie Xiao ◽  
Han Shi ◽  
Lei Tao ◽  
Liangliang Qi ◽  
Wei Min ◽  
...  

Filament-wound composite tubular structures are frequently used in transmission systems, pressure vessels, and sports equipment. In this study, the failure mechanism of composite tubes reinforced with different fibres under low-velocity impact (LVI) and the radial residual compression performance of the impacted composite tubes were investigated. Four fibres, including carbon fiber-T800, carbon fiber-T700, basalt fibre, and glass fibre, were used to fabricate the composite tubes by the winding process. The internal matrix/fibre interface of the composite tubes before the LVI and their failure mechanism after the LVI were investigated by scanning electric microscopy and X-ray micro-computed tomography, respectively. The results showed that the composite tubes mainly fractured through the delamination and fibre breakage damage under the impact of 15 J energy. Delamination and localized fibre breakage occur in the glass fibre-reinforced composite (GFRP) and basalt fibre-reinforced composite (BFRP) tubes when subjected to LVI. While fibre breakage damage occurs globally in the carbon fibre-reinforced composite (CFRP) tubes. The GFRP tube showed the best impact resistance among all the tubes investigated. The basalt fibre-reinforced composite (BFRP) tube exhibited the lowest structural impact resistance. The impact resistance of the CFRP-T700 and CFRP-T800 tube differed slightly. The radial residual compression strength (R-RCS) of the BFRP tube is not sensitive to the impact, while that of the GFRP tube is shown to be highly sensitive to the impact.


2012 ◽  
Vol 626 ◽  
pp. 255-259
Author(s):  
Siti Nur Liyana Mamauod ◽  
Mohd Hanafiah Abidin ◽  
Ahmad Zafir Romli

In the present study, experiment was carried out to investigate the impact properties of flexible and rigid polymer reinforced with E-glass fiber, under low velocity impact. The experimental work includes preparing the cured glassflexible modified epoxy and placed it onto the uncured glass-epoxy composite samples. The experimental results prove that the hybridization improves the impact strength of laminates. The flexibility segments that were introduced into the epoxy system increased the penetration impact resistance value. Hence more impact energy is required to perforate the samples compared to epoxy composite system which is brittle phase.


2016 ◽  
Vol 23 (6) ◽  
pp. 699-710 ◽  
Author(s):  
Yucheng Zhong ◽  
Sunil Chandrakant Joshi

AbstractThe effects of hygrothermal conditioning and moisture on the impact resistance of carbon fiber/epoxy composite laminates were investigated. Specimens were fabricated from carbon fiber/epoxy woven prepreg materials. The fabricated specimens were either immersed in water at 80°C or subjected to hot/wet (at 80°C in water for 12 h) to cold/dry (at -30°C in a freezer for 12 h) cyclic hygrothermal conditions, which resulted in different moisture contents inside the laminates. It was found that the absorbed moisture did not migrate out from composite materials at -30°C. Neither of the hygrothermal conditions in this study had detrimental effects on the microstructure of the laminates. Low-velocity impact testing was subsequently conducted on the conditioned specimens. When attacked by the same level of impact energy, laminates with different moisture levels experienced different levels of impact damage. Moisture significantly alleviated the extent of damage in carbon fiber/epoxy woven laminates. The elastic response of the laminate under impact was improved after hygrothermal conditioning. The mechanism behind the improved impact resistance after absorbing moisture was proposed and deliberated.


2012 ◽  
Vol 525-526 ◽  
pp. 289-292
Author(s):  
Fei Xu ◽  
Min Ge Duan

This study presents the numerical investigation of the low-velocity impact for the foam-cored sandwich composites. Firstly, the proposed FEA model is validated by comparing the results between simulation and test. The user subroutine VUMAT and the crushable foam model are chosen to describe the damage of the face sheets and the characteristics of the foam material, respectively. The detailed damage process of the sheets and the foam is clearly shown. The sensitivity of seven parameters related to foam-core material are studied. It is shown that the yield strength, the fracture strain and the fracture displacement have significant effects on the impact-resistance of the foam-cored sandwich composites.


Sign in / Sign up

Export Citation Format

Share Document