scholarly journals Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 391 ◽  
Author(s):  
Muhammad Shabdin ◽  
Mohd Abdul Rahman ◽  
Saiful Mazlan ◽  
Ubaidillah ◽  
Norhiwani Hapipi ◽  
...  

Considering persistent years, many researchers continuously seek an optimum way to utilize the idea of magnetorheology (MR) materials to be practically used for everyday life, particularly concerning resistivity sensing application. The rheology and resistivity of a graphite (Gr)-based magnetorheological elastomer (Gr-MRE) were experimentally evaluated in the present research. Magnetorheological elastomer (MRE) samples were prepared by adding Gr as a new additive during MRE fabrication. The effect of additional Gr on the rheological and resistivity properties were investigated and compared with those of typical MREs without a Gr additive. Morphological aspects of Gr-MRE were characterized using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Rheological properties under different magnetic fields were evaluated using a parallel-plate rheometer. Subsequently, the resistivity of all samples was measured under different applied forces and magnetic fields. From the resistivity evaluation, two relationship curves resistance (R) under different applied forces (F) and different magnetic fields (B) were established and plotted by using an empirical model. It was observed from the FESEM images that the presence of Gr fractions arrangement contributes to the conductivity of MRE. It was also observed that, with the addition of Gr, rheological properties such as the field-dependent modulus can be improved, particularly at low strain amplitudes. It is also demonstrated that the addition of Gr in MRE can contribute to the likely use of force detection in tactile sensing devices.

2020 ◽  
Vol 10 (5) ◽  
pp. 1638 ◽  
Author(s):  
Afiq Azri Zainudin ◽  
Nurul Azhani Yunus ◽  
Saiful Amri Mazlan ◽  
Muhammad Kashfi Shabdin ◽  
Siti Aishah Abdul Aziz ◽  
...  

Cobalt particles have been introduced as a filler due to the advantages of embedding their magnetic and electrical properties in magnetorheological elastomer (MRE). In the present research, the rheology and resistance of MRE are experimentally evaluated. Isotropic and anisotropic MRE samples containing silicone rubber and cobalt particles were fabricated. The magnetic properties of MRE are conducted using a vibrating sample magnetometer (VSM). The morphological aspects of MRE are observed by using field emission scanning electron microscopy (FESEM) and characterized by energy-dispersive X-ray spectroscopy (EDX). Rheological properties under various magnetic field strengths were measured for the magnetic field, strain amplitude, and frequency sweep test by using a parallel-plate rheometer. Subsequently, the resistance of MRE is tested under different applied forces and magnetic fields. The MRE storage modulus depicted an enhancement in field-dependent modulus across all the applied magnetic fields. The electrical resistance generated from the sample can be manipulated by external magnetic fields and mechanical loads. The conductivity of MRE is due to the existence of cobalt arrangements observed by FESEM. By introducing cobalt as filler and obtaining satisfactory results, the study might open new avenues for cobalt to be used as filler in MRE fabrication for future sensing applications.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


Author(s):  
Yancheng Li ◽  
Jianchun Li

This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for seismic protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A highly-adjustable MRE base isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MRE layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive base isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. Experimental results show that the prototypical MRE base isolator provides amazing increase of lateral stiffness up to 1630%. Such range of increase of the controllable stiffness of the base isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls. To facilitate the structural control development using the adaptive MRE base isolator, an analytical model was developed to stimulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator, including the observed strain stiffening effect.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Akihiko Ikeda ◽  
Yasuhiro H. Matsuda ◽  
Xuguang Zhou ◽  
Takeshi Yajima ◽  
Yuya Kubota ◽  
...  

2008 ◽  
Author(s):  
Feryal Özel ◽  
Tolga Güver ◽  
Ersin Göğüş ◽  
C. Bassa ◽  
Z. Wang ◽  
...  
Keyword(s):  

2016 ◽  
Vol 12 (S329) ◽  
pp. 369-372
Author(s):  
C. L. Fletcher ◽  
V. Petit ◽  
Y. Nazé ◽  
G. A. Wade ◽  
R. H. Townsend ◽  
...  

AbstractRecent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.


2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


2007 ◽  
Vol 665 (2) ◽  
pp. 1460-1468 ◽  
Author(s):  
Changyi Tan ◽  
Ju Jing ◽  
V. I. Abramenko ◽  
A. A. Pevtsov ◽  
Hui Song ◽  
...  

2018 ◽  
Vol 862 (2) ◽  
pp. 115
Author(s):  
Jin-Jun Geng ◽  
Yong-Feng Huang ◽  
Xue-Feng Wu ◽  
Li-Ming Song ◽  
Hong-Shi Zong
Keyword(s):  

1991 ◽  
Vol 05 (21) ◽  
pp. 1447-1456 ◽  
Author(s):  
A. R. HARUTUNYAN ◽  
L. S. GRIGORYAN ◽  
A. S. KUZANYAN ◽  
A. A. KUZNETSOV ◽  
A. A. TERENTIEV ◽  
...  

Two samples of benzene-treated Bi–Pb–Sr–Ca–Cu–O powder exhibited at 300 K magnetic field dependent diamagnetism and magnetization irreversibility. The treatment with benzene resulted also in the appearance of microwave absorption at low magnetic fields, while is sensitive to magnetic history of the sample. From X-ray diffraction data one can see that upon benzene treatment the reflections of 85 K and 110 K phases do not change practically, but a series of new reflections appeared, indicating a lattice modulation with 4.9 nm periodicity. A microprobe analysis revealed substantial inhomogeneity of chemical composition across the samples. The room temperature anomalies were weakened in one sample and vanished in the second upon thermal cycling.


Sign in / Sign up

Export Citation Format

Share Document