scholarly journals Conductive Cellulose based Foam Formed 3D Shapes—From Innovation to Designed Prototype

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 430 ◽  
Author(s):  
Sanna Siljander ◽  
Pasi Keinänen ◽  
Anastasia Ivanova ◽  
Jani Lehmonen ◽  
Sampo Tuukkanen ◽  
...  

In this article, we introduce for the first time, a method to manufacture cellulose based electrically conductive non-woven three-dimensional (3D) structures using the foam forming technology. The manufacturing is carried out using a minimum amount of processing steps, materials, and hazardous chemicals. The optimized solution applies a single surfactant type and a single predefined portion for the two main processing steps: (1) the dispersing of nanocellulose (NC) and carbon nanotubes (CNT) and (2) the foam forming process. The final material system has a concentration of the used surfactant that is not only sufficient to form a stable and homogeneous nanoparticle dispersion, but it also results in stable foam in foam forming. In this way, the advantages of the foam forming process can be maximized for this application. The cellulose based composite material has a highly even distribution of CNTs over the NC network, resulting a conductivity level of 7.7 S/m, which increased to the value 8.0 S/m after surfactant removal by acetone washing. Also, the applicability and a design product case ‘Salmiakki’ were studied where the advantages of the material system were validated for a heating element application.

TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


2014 ◽  
Vol 571-572 ◽  
pp. 1079-1082
Author(s):  
Jie Liu

Sheet incremental forming is a new sheet metal dieless forming technology. This paper introduced the fundamentals of the sheet incremental forming process. Based on the principle of “layered manufacture” in rapid prototype technology, this process resolves the intricate three-dimensional geometry information of the workpiece into a series of two-dimensional data, which can be used by an NC system to control a forming tool to make a curvilinear movement over the raw sheet metal layer by layer until the component wanted is formed. This paper introduced the sheet incremental forming system and metal digital forming technology. An FEM model of the incremental forming process is established, and a typical process is analyzed to instruct the parameters selection and the optimization of the forming tracks.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5148-5186
Author(s):  
Lotta Sorsamäki ◽  
Antti Koponen ◽  
Eemeli Hytönen

Foam forming technology has attracted much attention during the past few years in the paper industry. Its advantages compared to conventional water forming are a new product portfolio and increased process efficiency. To support the paper industry in pushing foam forming technology forward, process simulation is needed to provide supporting data for strategic decision-making and as a basis for equipment dimensioning. This study examined the conversion of an existing wallpaper machine from water to foam forming technology using process simulation. To determine the required process configuration and parameter changes in the existing process, both published and unpublished data on the foam forming process were collected. This paper also describes modeling of the foam phase in the selected simulation software. The suitability of existing paper process equipment for foam was analyzed. Simulations revealed that undisturbed operation with foam requires some equipment modifications and re-arrangements in water circuits. With foam forming, the water balance in both short and long circulation changes remarkably compared to conventional water forming, leading to a large increase in the long circulation volume flows.


2014 ◽  
Vol 607 ◽  
pp. 124-127
Author(s):  
Jie Liu

Sheet dieless digital forming is a new sheet metal dieless forming technology. This paper introduced the fundamentals of the Sheet dieless digital forming process. Based on the principle of “layered manufacture” in rapid prototype technology, this process resolves the intricate three-dimensional geometry information of the workpiece into a series of two-dimensional data, which can be used by an NC system to control a forming tool to make a curvilinear movement over the raw sheet metal layer by layer until the component wanted is formed. This paper introduced the Sheet dieless digital forming system and metal digital forming technology.


Author(s):  
Fenglei Tian ◽  
Xiaoping Qian

The use of a flared tip and bi-directional servo control in some recent atomic force microscopes (AFM) has made it possible for these advanced AFMs to image structures of general shapes with undercuts and reentrant surfaces. Since AFM images are distorted representation of sample surfaces due to the dilation (a.k.a. convolution) produced by the finite size of the probe, it is necessary to obtain the tip shape in order to correct such tip distortion. This paper presents an approach that can for the first time estimate general three-dimensional tip shape from its scanned image in these AFMs. It extends one existing blind tip estimation method to the dexel representation, a computer representation that can represent general 3D shapes. As such, it can estimate general tip shapes, including undercuts or reentrant features.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 838-843
Author(s):  
Philipp Müller ◽  
Bernd-Arno Behrens ◽  
Sven Hübner ◽  
Hendrik Vogt ◽  
Daniel Rosenbusch ◽  
...  

Techniken zur Steigerung der Formgebungsgrenzen in der Umformtechnik sind von hoher wirtschaftlicher Bedeutung. In dieser Arbeit wird eine Schwingungsüberlagerung im Krafthauptfluss eines Axialformprozesses zur Ausprägung einer Verzahnungsgeometrie untersucht. Die Auswirkungen der Schwingung auf die erzielbare Ausfüllung der Zahnkavitäten werden analysiert sowie die Parameter Schmierung und Oberflächengüte der Halbzeuge in ihrer kombinierten Wirkung untersucht. Es konnte eine Reduzierung der mittleren Umformkraft sowie eine Erhöhung der Formfüllung festgestellt werden. Techniques for extending the production limits in forming technology are of great economic importance. In this research, a superimposed oscillation in the main force flow of an axial forming process to form an axial gear geometry is investigated. The effects of the superimposed oscillation on the achievable form-filling of the tooth cavities are analyzed and the parameters lubrication and surface quality of the semi-finished products are investigated in their combined effect. A reduction of the averaged forming force as well as an increase of the form-filling could be achieved.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


Sign in / Sign up

Export Citation Format

Share Document