scholarly journals Synthesis, Properties of Biodegradable Poly(Butylene Succinate-co-Butylene 2-Methylsuccinate) and Application for Sustainable Release

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1507 ◽  
Author(s):  
Jiarui Han ◽  
Jiaxin Shi ◽  
Zhining Xie ◽  
Jun Xu ◽  
Baohua Guo

A novel biobased and biodegradable polyester, i.e., poly(butylene succinate-co-butylene 2-methylsuccinate) (P(BS-BMS)) was synthesized by succinic acid (SA), 2-methylsuccinic acid (MSA), and 1,4-butanediol (BDO) via a typically two-step esterification and polycondensation procedure. The chemical structure and macromolecular weight of obtained copolymers were characterized by 1H NMR, 13C NMR, and GPC. The melting temperature and degree of crystallinity were also studied by DSC, and it was found that the values were gradually decreased with increasing of MSA content, while the thermal stability remained almost unchanged which was tested by TGA. In addition, the biodegradation rate of the P(BS-BMS) copolymers could be controlled by adjusting the ratio of SA and MSA, and such biodegradability could make P(BS-BMS) copolymers avoid microplastic pollution which may be brought to the environment for applications in agricultural field. When we applied P(BS-BMS) copolymers as pesticide carriers which were prepared by premix membrane emulsification (PME) method for controlling Avermectin delivery, an improvement of dispersion and utilization of active ingredient was obviously witnessed. It showed a burst release process first followed by a sustained release of Avermectin for a long period, which had a great potential to be an effective and environmental friendly pesticide-release vehicle.

2018 ◽  
Vol 928 ◽  
pp. 3-8
Author(s):  
Natkrita Prasoetsopha ◽  
Jessada Didsabong ◽  
Kunlaya Sonthonglang ◽  
Patcharaporn Somdee ◽  
Witawat Singsang ◽  
...  

In the plastic industry, recycling waste from production is normal practice for reducing waste and cost. When they were reproduced, their mechanical properties are changed. These changes may affect the quality of the end product. Hence, this work studied the mechanical, thermal and rheological properties of recycled biodegradable poly (butylene succinate) (PBS) with reproduction of 10 cycles. The results showed that tensile strength was slightly increased with increasing reproduction cycle until 6thcycles and reduced in the further cycles, respectively. The elongation at break was abruptly decreased with an increase of the cycle number. Moreover, the hardness was quite constant in the lower cycle number but it was slightly decreased in the higher one. Melt flow index (MFI) measurements indicated a significant change in the material after 2rdrecycles. The results on thermal properties measurement showed that degree of crystallinity decreased in the 6thcycles.


Author(s):  
Dong-Lin Kuo ◽  
Erh-Chiang Chen ◽  
Tzong-Ming Wu

Biocompatible and biodegradable poly(butylene succinate-co-adipate) (PBSA)/hexadecylamine-modified PPZn (m-PPZn) nanocomposites were prepared using a melt mixing process. Experimental results of wide-angle X-ray diffraction and transmission electron microscopy revealed that the stacking layers of the m-PPZn were partially intercalated and partially exfoliated into the PBSA polymer matrix. The isothermal crystallization kinetics of PBSA/m-PPZn nanocomposites were studied at the temperature range of 62−70 °C and the half-time for crystallization of 3 wt % PBSA/m-PPZn nanocomposite was reduced by 27−35% compared with that of pure PBSA. This finding suggests that the incorporation of m-PPZn might cause the heterogeneous nucleation and the subsequent crystallization growth, which enhances the isothermal crystallization rate of PBSA/m-PPZn nanocomposite. The biodegradation rates of PBSA using Lipase from Pseudomonas sp. increase as the contents of m-PPZn increase. The degradation behavior of the neat PBSA investigated using the change of weight-average molecular weight belongs to exo-type hydrolysis activity. It is necessary to point out that the change of degree of crystallinity and degradation rate are almost linearly proportional to the loading of hexadecylamine-modified PPZn. This finding would provide an important information for the manufacturing biodegradable PBSA nanocomposites.


Author(s):  
Roberto Altieri ◽  
Maurizia Seggiani ◽  
Alessandro Esposito ◽  
Patrizia Cinelli ◽  
Vitale Stanzione

AbstractTwo different raw hydrolyzed collagens (HCs), by-products of the Tannery industry, were investigated in blends with a bioplastic, as poly(butylene succinate-co-adipate) (PBSA), for the production of thermoplastic items for possible applications in agriculture. Chemical characterization of selected PBSA/HC blends and phytotoxicity assays on garden cress seeds (Lepidium sativum L.), used as spy species, were carried out; in addition, biodegradation and disintegration of specimens were assessed under controlled composting conditions at different temperature (58 and 25 °C). Although one of the HC investigated released sodium chloride in the aqueous extract, all PBSA/HC blends, up to 20 wt.% HC, resulted no-phytotoxic and showed considerable amounts of macro- and micro- nutrients for plants (mainly nitrogen). Regardless the amount added, HCs enhanced the biodegradation rate of PBSA/HC blends in compost at 58 °C compared to pure PBSA; lowering the temperature at 25 °C, as expected, biodegradation rate slightly lowered using the same compost. Most disintegration tests, performed on dog bone samples, corroborated the results of the biodegradation tests, thus suggesting that plastic mixtures could reasonably end their life cycle in a composting facility without decreasing the quality and the safety of the resulting compost. The outcomes achieved encourage the use of raw collagen hydrolysates from tanning industry in the production of PBSA-based thermoplastic blends to produce compostable items (mulching films and/or plant pots) for more sustainable uses in agriculture and/or plant nurseries. In addition, the use of these low-cost by-products can lower the cost of final product and give it fertilizing properties for plants given the presence of organic nitrogen in the hydrolysates.


2011 ◽  
Vol 50 (6) ◽  
pp. 1171-1184 ◽  
Author(s):  
Sang Kyun Lim ◽  
Seok In Lee ◽  
Suk Goo Jang ◽  
Kwang Hee Lee ◽  
Hyoung Jin Choi ◽  
...  

2015 ◽  
Vol 1095 ◽  
pp. 349-354 ◽  
Author(s):  
Liang Hua Gu ◽  
Hong Qing Song ◽  
Zhi Yong Sun ◽  
Ji Yong Zheng ◽  
Jin Wei Zhang ◽  
...  

A controlled release composite has been prepared by intercalation of sodium paeonolsilate (PAS) into Mg/Al layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The chemical composites of PAS-LDH were revealed by elemental analysis. Release tests of the PAS-LDH composite showed that no burst release phenomenon occurred at the beginning stage and a high release ratio of PAS (89.8%) was obtained, exhibiting controlled release behavior. Furthermore, the parabolic diffusion model was used to simulate the release kinetics of PAS from the LDH carrier, indicating that the intraparticle diffusion via ion-exchange is the rate-determining step in the release process. It is significance in this work for introducing the PAS-LDH composite to develop antifouling materials with long-term activity.


2018 ◽  
Vol 44 ◽  
pp. 00014
Author(s):  
Maciej Borowczak ◽  
Stanisław Frąckowiak

Electrospinning of biodegradable poly (butylene succinate) has been performed from different solvent systems. Alternation of process parameters resulted in respective changes of the surface structure topography which was evaluated by using scanning electron microscopy (SEM).


2012 ◽  
Vol 51 (38) ◽  
pp. 12258-12265 ◽  
Author(s):  
Jian-Bing Zeng ◽  
Cai-Li Huang ◽  
Ling Jiao ◽  
Xi Lu ◽  
Yu-Zhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document