Mechanical, Thermal and Rheological Properties of Reprocessable Poly(Butylene Succinate)

2018 ◽  
Vol 928 ◽  
pp. 3-8
Author(s):  
Natkrita Prasoetsopha ◽  
Jessada Didsabong ◽  
Kunlaya Sonthonglang ◽  
Patcharaporn Somdee ◽  
Witawat Singsang ◽  
...  

In the plastic industry, recycling waste from production is normal practice for reducing waste and cost. When they were reproduced, their mechanical properties are changed. These changes may affect the quality of the end product. Hence, this work studied the mechanical, thermal and rheological properties of recycled biodegradable poly (butylene succinate) (PBS) with reproduction of 10 cycles. The results showed that tensile strength was slightly increased with increasing reproduction cycle until 6thcycles and reduced in the further cycles, respectively. The elongation at break was abruptly decreased with an increase of the cycle number. Moreover, the hardness was quite constant in the lower cycle number but it was slightly decreased in the higher one. Melt flow index (MFI) measurements indicated a significant change in the material after 2rdrecycles. The results on thermal properties measurement showed that degree of crystallinity decreased in the 6thcycles.

2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.


2021 ◽  
Vol 22 (14) ◽  
pp. 7438
Author(s):  
Paulina Kasprzyk ◽  
Ewa Głowińska ◽  
Paulina Parcheta-Szwindowska ◽  
Kamila Rohde ◽  
Janusz Datta

This study concerns green thermoplastic polyurethanes (TPU) obtained by controlling the chemical structure of flexible segments. Two types of bio-based polyether polyols—poly(trimethylene glycol)s—with average molecular weights ca. 1000 and 2700 Da were used (PO3G1000 and PO3G2700, respectively). TPUs were prepared via a two-step method. Hard segments consisted of 4,4′-diphenylmethane diisocyanates and the bio-based 1,4-butanodiol (used as a chain extender and used to control the [NCO]/[OH] molar ratio). The impacts of the structure of flexible segments, the amount of each type of prepolymer, and the [NCO]/[OH] molar ratio on the chemical structure and selected properties of the TPUs were verified. By regulating the number of flexible segments of a given type, different selected properties of TPU materials were obtained. Thermal analysis confirmed the high thermal stability of the prepared materials and revealed that TPUs based on a higher amount of prepolymer synthesized from PO3G2700 have a tendency for cold crystallization. An increase in the amount of PO3G1000 at the flexible segments caused an increase in the tensile strength and decrease in the elongation at break. Melt flow index results demonstrated that the increase in the amount of prepolymer based on PO3G1000 resulted in TPUs favorable in terms of machining.


2020 ◽  
Vol 40 (9) ◽  
pp. 771-781
Author(s):  
Janne van Gisbergen ◽  
Jaap den Doelder

AbstractRecycling of thermoplastic polymers is an important element of sustainable circular economy practices. The quality of mechanically recycled polymers is a concern. A method is presented to predict the structure and processability of recycled blends of polymers based on processability knowledge of their virgin precursor components. Blending rules at molecular weight distribution level are well established and form the foundation of the new method. Two essential fundamental building blocks are combined with this foundation. First, component and blend structure are related to viscosity via tube theories. Second, viscosity is related to melt flow index via a continuum mechanics approach. Emulator equations are built based on virtual experimental designs for fast forward and reverse calculations directly relating structure to viscosity and processability. The new combined method is compared with empirical blend rules, and shows important similarities and also clear quantitative differences. Finally, the new method is applied to practical recycling quality challenges.


2013 ◽  
Vol 701 ◽  
pp. 202-206
Author(s):  
Ahmad Aroziki Abdul Aziz ◽  
Sakinah Mohd Alauddin ◽  
Ruzitah Mohd Salleh ◽  
Mohammed Iqbal Shueb

Effect of nanoMagnesium Hydroxide (MH) nloading amount to the mechanical and physical properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nanocomposite has been described and investigated in this paper. The tensile strength results show that increased amount of nanofiller will decrease and deteriorate the mechanical properties. The elongation at break decreased continuously with increasing loading of nanofiller. Generally, mechanical properties become poorer as loading amount increase. Melt Flow Index values for physical properties also provide same trend as mechanical properties results. Increase filler amount reduced MFI values whereby increased resistance to the flow.


2020 ◽  
pp. 089270572090409
Author(s):  
Khadidja Arabeche ◽  
Fatiha Abdelmalek ◽  
Laurent Delbreilh ◽  
Latéfa Zair ◽  
Abdelkader Berrayah

Biodegradable poly(butylene succinate) (PBS)/Alfa fiber biocomposites were prepared through the compression molding method. Scanning electron microscopy images were acquired to assess the effects of reinforcement and homogenization of mixtures and to determine the characteristics of the microstructure. The rheological properties, melting, and crystallization behavior of neat PBS and its biocomposites were investigated. Regarding the thermal properties, it was observed that the presence of Alfa fibers facilitates the crystallization of the PBS matrix, which suggests that Alfa cellulose fiber acts as a nucleating agent. The rheological analysis suggests that the biocomposites show a better dynamic behavior with the addition of Alfa fibers. Indeed, the incorporation of fibers increased the complex modulus and complex viscosity of the composites. Also, increasing the percentage of fibers in the matrix induces percolation, the shift and change in the slope of Cole–Cole curve of the PBS/Alfa fiber composite compared to that of neat PBS indicate that the PBS microstructure has changed with the addition of fibers. Moreover, the improvement of biocomposites properties is believed to be largely attributable to the homogeneous dispersion of the Alfa fibers within the polymer matrix and also to the strong interfacial interactions between the two constituents.


2013 ◽  
Vol 33 (2) ◽  
pp. 111-119
Author(s):  
Yiming Liu ◽  
Qing Liu ◽  
Bing Meng ◽  
Zhihua Wu

Abstract Polycaprolactone (PCL)-coated micro kaolin and nano-titania were prepared by high-speed hybrid mechanical coating. Poly(butylene succinate) (PBS)-coated inorganic particle composites were prepared by the melt-blending process. The influence of coated kaolin microparticles on the dynamic rheological behavior, non-isothermal crystallization behavior, micromorphology, and mechanical behavior were investigated. The effect of coated nano-titania on the mechanical properties of PBS-coated kaolin composites was also studied. A dynamic rheological property indicates that the complex viscosity of PBS-coated kaolin microcomposites is higher than neat PBS. Differential scanning calorimetry (DSC) implies that the micrometric size of kaolin particles restrains the crystallization of PBS. Scanning electronic microscopy (SEM) reveals a well dispersed state of coated kaolin in the polymer matrix. The impact strength of PBS-coated kaolin microcomposites is improved, while the tensile strength and elongation at break is decreased, but still appreciable. The introduction of coated nano-titania improves the impact strength dramatically, and the elongation at break of composites is considerable.


2012 ◽  
Vol 32 (3) ◽  
Author(s):  
Hyung-Jin Roh ◽  
Doe Kim ◽  
Dong-Ho Lee ◽  
Keun-Byoung Yoon

Abstract A branched copolyester was synthesized using dimethyl terephthalate (DMT), 2,2-bis[4-(2-hydroxypropoxy)phenyl]propane, ethylene glycol (EG) and 2-(hydroxymethyl)-2- ethylpropane-1,3-diol (trimethylol propane, TMP). The branched copolyester and p-phenylene diisocyanate (PPDI) were melt extruded to enhance the melt viscosity and elasticity for use as a toner binder in the laser printing process. The effects of PPDI content on melt, thermal and rheological properties of the chain-extended copolyester were investigated. The melt flow index (MI) decreased with increasing amount of PPDI, due to a reaction between the hydroxyl chain end and isocyanate group. The storage modulus, loss modulus and complex viscosity of the chain extended copolyester were higher and the modified Cole-Cole plots revealed the chain extended copolyester to have higher elasticity than that of the branched copolyester. The chain extended copolyester exhibited suitable melt and rheological properties for applications as a toner binder in the laser printing processes.


2019 ◽  
Author(s):  
Karolina Stępień ◽  
Cathrine Miles ◽  
Andrew McClain ◽  
Ewa Wiśniewska ◽  
Peter Sobolewski ◽  
...  

<p>Poly(butylene succinate) (PBS) is a thermoplastic and biodegradable polyester characterized by high rigidity due to its high crystallinity. However, the use of long chain biobased monomers to produce segmented copolymers is an effective strategy to tailor the properties of PBS, such as greater flexibility. In this paper, a series of aliphatic bio-copolyesters of poly(butylene succinate-dilinoleic succinate) (PBS-DLS) were successfully synthesized <i>via </i>a direct two-step polycondensation method using a semi-pilot scale reactor for melt polymerization and titanium dioxide/silicon dioxide coprecipitate catalyst (C-94). In this study, the thermal and mechanical properties were investigated and compared, focusing on the effect of varying the amount of biobased dilinoleic diol in the structure. With increasing amount of long chain diol, a decrease in molecular weight, density, and melt flow index was observed. The semicrystalline nature of the copolymers was confirmed using differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) methods. These copolymers exhibit two main transition temperatures and vary in softness and processing flexibility. Furthermore, in the DSC data a linear trend was observed with increasing wt.% of hard PBS segments, which can be described by the Gordon-Taylor equation. Increasing the soft DLS segment content in the copolymer series resulted in an increase in the elastic behavior of the polymers. The broad range of crystallization temperatures and melt flow index values indicates that a polyester library with customizable properties that spans PBS applications has been successfully obtained.</p>


2018 ◽  
Vol 5 (3) ◽  
pp. 57-65
Author(s):  
Raed Ma'ali

Low-density polyethylene (LDPE) has many unique properties such as lightweight and high chemical resistance. Unfortunately, it burns rapidly when it is exposed to a flame which limits its applications especially when flame resistance is to be considered. Different percentages of magnesium hydroxide and decabromide diphenyl ether (3.0, 5.0, 7.0, and 9.0 wt.%) were mixed with LDPE using a two-roll mill machine at 1600C for 2 minutes. Then, the tensile and flame retardancy tests samples were prepared by an injection molding process using an industrial plastic machine at 1600C. Flammability, rheological, tensile and thermal properties of the produced samples were tested using a flammability test apparatus, a melt flow index machine, a universal testing machine, and a differential scanning calorimeter, respectively. It was observed that the flame resistance of LDPE was improved with the addition of both flame retardants up to 7.0 wt.%, then it was reduced when 9.0 wt.% of flame retardants were used. This may be attributed to the poor mixing due to the increase in the polymer melt viscosity as observed from the melt flow index results. An increase in elastic modulus and a reduction in ductility of LDPE were observed with the increasing of flame-retardant contents while the ultimate tensile strength of LDPE was increased from 5.7 to 7.6 and 7.5 MPa when 9.0 wt.% and 7.0wt.% decabromide diphenyl ether and magnesium hydroxide were added. This is due to the fact that the additives act as a load carried and/or their effects on the degree of crystallinity of LDPE.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1507 ◽  
Author(s):  
Jiarui Han ◽  
Jiaxin Shi ◽  
Zhining Xie ◽  
Jun Xu ◽  
Baohua Guo

A novel biobased and biodegradable polyester, i.e., poly(butylene succinate-co-butylene 2-methylsuccinate) (P(BS-BMS)) was synthesized by succinic acid (SA), 2-methylsuccinic acid (MSA), and 1,4-butanediol (BDO) via a typically two-step esterification and polycondensation procedure. The chemical structure and macromolecular weight of obtained copolymers were characterized by 1H NMR, 13C NMR, and GPC. The melting temperature and degree of crystallinity were also studied by DSC, and it was found that the values were gradually decreased with increasing of MSA content, while the thermal stability remained almost unchanged which was tested by TGA. In addition, the biodegradation rate of the P(BS-BMS) copolymers could be controlled by adjusting the ratio of SA and MSA, and such biodegradability could make P(BS-BMS) copolymers avoid microplastic pollution which may be brought to the environment for applications in agricultural field. When we applied P(BS-BMS) copolymers as pesticide carriers which were prepared by premix membrane emulsification (PME) method for controlling Avermectin delivery, an improvement of dispersion and utilization of active ingredient was obviously witnessed. It showed a burst release process first followed by a sustained release of Avermectin for a long period, which had a great potential to be an effective and environmental friendly pesticide-release vehicle.


Sign in / Sign up

Export Citation Format

Share Document