scholarly journals Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden-Popper Structure

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1668 ◽  
Author(s):  
Nataliia Tarasova ◽  
Irina Animitsa ◽  
Anzhelika Galisheva ◽  
Daniil Korona

The new phases BaLa0.9M0.1InO3.95 (M = Ca2+, Sr2+, Ba2+) with a Ruddlesden-Popper structure were obtained. It was established that all investigated samples were capable for the water uptake from the gas phase. The ability of water incorporation was due to not only by the presence of oxygen vacancies, but also due to the presence of La-O blocks in the structure. The degree of hydration of the samples was much higher than the concentration of oxygen vacancies and the composition of the samples appear to be BaLaInO3.42(OH)1.16, BaLa0.9Ca0.1InO3.25(OH)1.4, BaLa0.9Sr0.1InO3.03(OH)1.84, BaLa0.9Ba0.1InO2.9(OH)2.1. The degree of hydration increased with an increase in the size of the dopant, i.e., with an increase in the size of the salt blocks. It was proven that doping led to the increase in the oxygen ionic conductivity. The conductivities for doped samples BaLa0.9M0.1InO3.95 were higher than for undoped composition BaLaInO4 at ~1.5 order of magnitude. The increase in the conductivity was mainly attributed to the increase of the carrier concentration as a result of the formation of oxygen vacancies during doping. The proton conductivities of doped samples increased in the order Ca2+–Sr2+–Ba2+ due to an increase in the concentration of protons. It was established that all doped samples demonstrated the dominant proton transport below 450 °C.

2016 ◽  
Vol 52 (12) ◽  
pp. 2521-2524 ◽  
Author(s):  
Yuting Xiao ◽  
Yajie Chen ◽  
Ying Xie ◽  
Guohui Tian ◽  
Shien Guo ◽  
...  

Hydrogenated CeO2−xSx mesoporous hollow spheres were prepared and exhibited much higher rates of O2 evolution than CeO2 and CeO2−xSx due to the synergistic effect of high sulfur doping level, narrow band gap, moderate oxygen vacancies and higher carrier concentration.


2014 ◽  
Vol 28 ◽  
pp. 163-170 ◽  
Author(s):  
Khuzaimah Nazir ◽  
Siti Fadzilah Ayub ◽  
Ahmad Fairoz Aziz ◽  
Ab Malik Marwan Ali ◽  
Muhd Zu Azhan Yahya

In this study, a freestanding thin film composed of lithium triflate (LiTf) salt (30-40 wt.%) and epoxidized-30% poly (methyl methacrylate)-grafted natural rubber (EMG30) (50, 54.6, 62.3 mol %) were prepared by a solvent cast technique. The EMG30 were found to increase the ionic conductivity of EMG30-LiTf by one order of magnitude compared to MG30-LiTf. The highest ionic conductivity achieved was 5.584 x10-3Scm-1at room temperature when 40 wt.% of LiTf salts were introduced into 62.3 mol % EMG30. The ionic conduction mechanisms in EMG30-LiTf electrolytes obey Arrhenius rule in which the ion transport in these materials is thermally assisted.


2013 ◽  
Vol 13 (10) ◽  
pp. 5117-5135 ◽  
Author(s):  
B. Ervens ◽  
Y. Wang ◽  
J. Eagar ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
...  

Abstract. Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~ 10 mgC L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤ 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase of clouds or fogs, respectively, comprises 2–~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7 × 103 M atm−1 to 7 × 104 M atm−1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are used to contrast two scenarios, i.e., an anthropogenically vs. a more biogenically impacted one as being representative for Davis and Whistler, respectively. Since the simplicity of the box model prevents a fully quantitative prediction of the observed aldehyde concentrations, we rather use the model results to compare trends in aldehyde partitioning and ratios. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels significantly by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dicarbonyl compounds (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is < 10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~ 1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects in the oxidation capacity of the atmosphere.


2010 ◽  
Vol 72 ◽  
pp. 343-347 ◽  
Author(s):  
Sachi Taniguchi ◽  
Masaru Aniya

In complex perovskite-type oxides which have been studied as cathode materials, the thermal expansion coefficient increases with the increase in the oxygen ionic conductivity. In the present study, with the aim to explain such a behavior, a research has been carried out from a chemical bond point of view. For oxides A1-xA′xB1-yB′yO with perovskite structure, the ionicity of the individual bond, A-O and B-O, and the thermal expansion coefficient of mixed compounds were estimated by using semiempirical methods. It has been shown that the thermal expansion coefficient and the oxygen ionic conductivity decrease with the increase in the difference of the ionicity between A-O and B-O bonds. It is also found that the tolerance factor and the specific free volume are linearly correlated with the difference of ionicity.


1989 ◽  
Vol 162 ◽  
Author(s):  
K. Nishimura ◽  
K. Das ◽  
M. Iwase ◽  
J. T. Glass ◽  
K. Kobashi

ABSTRACTB doped diamond films were synthesized by microwave plasma CVD and electrical contacts were fabricated by R F sputtering. Rc was obtained for Pt, Ni, TaSi2, and Al asdeposited contacts at room temperature. Pt gave the minimum Rc and Al gave the maximum Rc of the metals investigated on films containing a carrier concentration of 5 × 1018/cm3. The minimum Rc, 8.6 × 10−4 Ω cm 2, was obtained on heavily B doped diamond films with a carrier concentration of 2.7 × 1020/cm3. After nnealing at 400 °C, the Rc of Pt contacts on B doped diamond films with a resistivity of 2×104 Ω1 cm decreased by approximately one order of magnitude.


2009 ◽  
Vol 14 (6) ◽  
pp. 945-949 ◽  
Author(s):  
Yan-bo Zuo ◽  
Jian-heng Li ◽  
Qing Zeng ◽  
Wei Liu ◽  
Chu-sheng Chen

1997 ◽  
Vol 496 ◽  
Author(s):  
R. E. Dillon ◽  
D. F. Shriver

ABSTRACTCryptands and crown ethers along with the lithium salt, LiCF3SO2N(CH2)3OCH3 (LiMPSA) were employed to produce a new type of amorphous electrolyte. The key to producing an amorphous phase was the mismatch between the cavity size of the macrocycle and the diameter of the cation. The addition of poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene) (MEEP) to the amorphous complex, LiMPSA/2.2.2 Cryptand, imparts improved electrochemical and viscoelastic properties. Conversely, when poly(sodium-4-styrenesulfonate) (PS4SS) is added to the amorphous complex, LiMPSA/2.2.2 Cryptand, the product crystallizes. The ionic conductivity of the MEEP rubbery electrolyte is a full order of magnitude higher when compared to the analogous PS4SS doped electrolyte (3.8×10−5 S cm−1 (MEEP), 1.7×10−6 S cm1 (PS4SS) both at 30°K).


Sign in / Sign up

Export Citation Format

Share Document