scholarly journals The Effect of Ultraviolet Photofunctionalization on a Titanium Dental Implant with Machined Surface: An In Vitro and In Vivo Study

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2078 ◽  
Author(s):  
Jun-Beom Lee ◽  
Ye-Hyeon Jo ◽  
Jung-Yoo Choi ◽  
Yang-Jo Seol ◽  
Yong-Moo Lee ◽  
...  

Ultraviolet (UV) photofunctionalization has been suggested as an effective method to enhance the osseointegration of titanium surface. In this study, machined surface treated with UV light (M + UV) was compared to sandblasted, large-grit, acid-etched (SLA) surface through in vitro and in vivo studies. Groups of titanium specimens were defined as machined (M), SLA, and M + UV for the disc type, and M + UV and SLA for the implant. The discs and implants were assessed using scanning electron microscopy, confocal laser scanning microscopy, electron spectroscopy for chemical analysis, and the contact angle. Additionally, we evaluated the cell attachment, proliferation assay, and real-time polymerase chain reaction for the MC3T3-E1 cells. In a rabbit tibia model, the implants were examined to evaluate the bone-to-implant contact ratio and the bone area. In the M + UV group, we observed the lower amount of carbon, a 0°-degree contact angle, and enhanced osteogenic cell activities (p < 0.05). The histomorphometric analysis showed that a higher bone-to-implant contact ratio was found in the M + UV implant at 10 days (p < 0.05). In conclusion, the UV photofunctionalization of a Ti dental implant with M surface attained earlier osseointegration than SLA.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3400 ◽  
Author(s):  
Chang-Bin Cho ◽  
Sung Youn Jung ◽  
Cho Yeon Park ◽  
Hyun Ki Kang ◽  
In-Sung Luke Yeo ◽  
...  

In this study, we evaluated early bone responses to a vitronectin-derived, minimal core bioactive peptide, RVYFFKGKQYWE motif (VnP-16), both in vitro and in vivo, when the peptide was treated on sandblasted, large-grit, acid-etched (SLA) titanium surfaces. Four surface types of titanium discs and of titanium screw-shaped implants were prepared: control, SLA, scrambled peptide-treated, and VnP-16-treated surfaces. Cellular responses, such as attachment, spreading, migration, and viability of human osteoblast-like HOS and MG63 cells were evaluated in vitro on the titanium discs. Using the rabbit tibia model with the split plot design, the implants were inserted into the tibiae of four New Zealand white rabbits. After two weeks of implant insertion, the rabbits were sacrificed, the undecalcified specimens were prepared for light microscopy, and the histomorphometric data were measured. Analysis of variance tests were used for the quantitative evaluations in this study. VnP-16 was non-cytotoxic and promoted attachment and spreading of the human osteoblast-like cells. The VnP-16-treated SLA implants showed no antigenic activities at the interfaces between the bones and the implants and indicated excellent bone-to-implant contact ratios, the means of which were significantly higher than those in the SP-treated implants. VnP-16 reinforces the osteogenic potential of the SLA titanium dental implant.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1426
Author(s):  
Blanca Ríos-Carrasco ◽  
Bernardo Ferreira Lemos ◽  
Mariano Herrero-Climent ◽  
F. Javier Gil Mur ◽  
Jose Vicente Ríos-Santos

Previous studies have shown that the most reliable way to evaluate the success of an implant is by bone-to-implant contact (BIC). Recent techniques allow modifications to the implant surface that improve mechanical and biological characteristics, and also upgrade osseointegration. Objective: The aim was to evaluate the osseointegration in rabbit tibia of two different titanium dental implant surfaces: shot-blasted with Al2O3 (SB) and the same treatment with an acid-etching by immersion for 15 s in HCl/H2SO4 (SB + AE). Material and methods: Roughness parameters (Ra, Rt, and Rz) were determined by white light interferometer microscopy. Surface wettability was evaluated with a contact angle video-based system using water, di-iodomethane, and formamide. Surface free energy was determined by means of Owens and Wendt equations. Scanning electron microscopy equipped with X-ray microanalysis was used to study the morphology and determine the chemical composition of the surfaces. Twenty-four grade 4 titanium dental implants (Essential Klockner®) were implanted in the rabbit’s tibia, 12 for each surface treatment, using six rabbits. Six weeks later the rabbits were sacrificed and the implants were sent for histologic analysis. Resonance frequency analysis (RFA) was recorded both at the time of surgery and the end of the research with each device (Osstell Mentor and Osstell ISQ). Results: The roughness measurements between the two treatments did not show statistically significant differences. However, the effect of the acid etching made the surface slightly more hydrophilic (decreasing contact angle from 74.7 for SB to 64.3 for SB + AE) and it presented a higher surface energy. The bone-to-implant contact ratio (BIC %) showed a similar tendency, with 55.18 ± 15.67 and 59.9 ± 13.15 for SB and SB + AE implants, respectively. After 6 weeks of healing, the SB + AE showed an implant stability quotient (ISQ) value of 76 ± 4.47 and the shot-blasted one an ISQ value of 75.83 ± 8.44 (no statistically significant difference). Implants with different surface properties had distinctive forms of behavior regarding osseointegration. Furthermore, the Osstell system was an invasive and reliable method to measure implant stability. Conclusion: Both surfaces of implants studied showed high osseointegration. The SB and SB + AE implants used in our study had similar behavior both in terms of BIC values and RFA. The RFA systems in Osstell Mentor and Osstell ISQ confirmed nearly perfect reproducibility and repeatability.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


2021 ◽  
Vol 6 (12) ◽  
pp. 4568-4579
Author(s):  
Xiaoyu Huang ◽  
Yang Ge ◽  
Bina Yang ◽  
Qi Han ◽  
Wen Zhou ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (14) ◽  
pp. 6353
Author(s):  
Vittoria D’Esposito ◽  
Josè Camilla Sammartino ◽  
Pietro Formisano ◽  
Alessia Parascandolo ◽  
Domenico Liguoro ◽  
...  

Background: The aim of this research was to evaluate the effects of three different titanium (Ti) implant surfaces on the viability and secretory functions of mesenchymal stem cells isolated from a Bichat fat pad (BFP-MSCs). Methods: Four different Ti disks were used as substrate: (I) D1: smooth Ti, as control; (II) D2: chemically etched, resembling the Kontact S surface; (III) D3: sandblasted, resembling the Kontact surface; (IV) D4: blasted/etched, resembling the Kontact N surface. BFP-MSCs were plated on Ti disks for 72 h. Cell viability, adhesion on disks and release of a panel of cytokines, chemokines and growth factor were evaluated. Results: BFP-MSCs plated in wells with Ti surface showed a viability rate (~90%) and proliferative rate comparable to cells plated without disks and to cells plated on D1 disks. D2 and D4 showed the highest adhesive ability. All the Ti surfaces did not interfere with the release of cytokines, chemokines and growth factors by BFP-MSCs. However, BFP-MSCs cultured on D4 surface released a significantly higher amount of Granulocyte Colony-Stimulating Factor (G-CSF) compared either to cells plated without disks and to cells plated on D1 and D2. Conclusions: The implant surfaces examined do not impair the BFP-MSCs cell viability and preserve their secretion of cytokines and chemokines. Further in vitro and in vivo studies are necessary to define the implant surface parameters able to assure the chemokines’ optimal release for a real improvement of dental implant osseointegration.


2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


2006 ◽  
Vol 309-311 ◽  
pp. 801-804 ◽  
Author(s):  
S.B. Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

In order to overcome the disadvantage of commercialized PMMA bone cement, we have developed novel PMMA-based bone cement(7P3S) reinforced by 30 wt.% of bioactive CaO-SiO2 gel powders to induce the bioactivity as well as to increase mechanical property for the PMMA bone cement. The novel 7P3S bone cement hardened after mixing for about 7 minutes. For in vitro evaluation, apatite forming ability of it was investigated using SBF. When the novel 7P3S bone cement was soaked into SBF, it formed apatite on its surfaces within 1 week Furthermore; there is no decrease in its compressive strength within 9 weeks soaking in SBF. It is though that hardly decrease in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. In vivo evaluation of the novel 7P3S bone cement was carried out using rabbit. After implantion into rabbit tibia for several periods, the interface between novel bone cement and natural bone was evaluated by CT images. According to the results, the novel bone cement directly contact to the natural bone without fibrous tissue after implantation for 4 weeks. This results indicates that the newly developed 7P3S bone cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 379-388 ◽  
Author(s):  
M.J. Carette ◽  
M.W. Ferguson

Fusion of bilateral shelves, to form the definitive mammalian secondary palate, is critically dependent on removal of the medial edge cells that constitute the midline epithelial seam. Conflicting views suggest that programmed apoptotic death or epithelial-mesenchymal transformation of these cells is predominantly involved. Due in part to the potentially ambiguous interpretation of static images and the notable absence of fate mapping studies, the process by which this is achieved has, however, remained mechanistically equivocal. Using an in vitro mouse model, we have selectively labelled palatal epithelia with DiI and examined the fate of medial edge epithelial (MEE) cells during palatal fusion by localisation using a combination of conventional histology and confocal laser scanning microscopy (CLSM). In dynamic studies using CLSM, we have made repetitive observations of the same palatal cultures in time-course investigations. Our results concurred with the established morphological criteria of seam degeneration; however, they provided no evidence of MEE cell death or transformation. Instead we report that MEE cells migrate nasally and orally out of the seam and are recruited into, and constitute, epithelial triangles on both the oral and nasal aspects of the palate. Subsequently these cells become incorporated into the oral and nasal epithelia on the surface of the palate. We hypothesize an alternative method of seam degeneration in vivo which largely conserves the MEE population by recruiting it into the nasal and oral epithelia.


1993 ◽  
Vol 104 (4) ◽  
pp. 1175-1185 ◽  
Author(s):  
P. Buchenau ◽  
H. Saumweber ◽  
D.J. Arndt-Jovin

The regulation of DNA topology by topoisomerase II from Drosophila melanogaster has been studied extensively by biochemical methods but little is known about its roles in vivo. We have performed experiments on the inhibition of topoisomerase II in living Drosophila blastoderm embryos. We show that the enzymatic activity can be specifically disrupted by microinjection of antitopoisomerase II antibodies as well as the epipodophyllotoxin VM26, a known inhibitor of topoisomerase II in vitro. By labeling the chromatin of live embryos with tetramethylrhodamine-coupled histones, the effects of inhibition on nuclear morphology and behaviour was followed in vivo using confocal laser scanning microscopy. Both the antibodies and the drug prevented or hindered the segregation of chromatin daughter sets at the anaphase stage of mitosis. In addition, high concentrations of inhibitor interfered with the condensation of chromatin and its proper arrangement into the metaphase plate. The observed effects yielded non-functional nuclei, which were drawn into the inner yolk mass of the embryo. Concurrently, undamaged nuclei surrounding the affected region underwent compensatory division, leading to the restoration of the nuclear population, and thereby demonstrating the regulative capacity of Drosophila blastoderm embryos.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2261
Author(s):  
Zuzanna Rzepka ◽  
Jakub Rok ◽  
Justyna Kowalska ◽  
Klaudia Banach ◽  
Justyna Magdalena Hermanowicz ◽  
...  

Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe neuropsychiatric abnormalities. The cellular and molecular aspects of the nervous system disorders associated with hypovitaminosis B12 remain largely unknown. Growing evidence indicates that astrogliosis is an underlying component of a wide range of neuropathologies. Previously, we developed an in vitro model of cobalamin deficiency in normal human astrocytes (NHA) by culturing the cells with c-lactam of hydroxycobalamin (c-lactam OH-Cbl). We revealed a non-apoptotic activation of caspases (3/7, 8, 9) in cobalamin-deficient NHA, which may suggest astrogliosis. The aim of the current study was to experimentally verify this hypothesis. We indicated an increase in the cellular expression of two astrogliosis markers: glial fibrillary acidic protein and vimentin in cobalamin-deficient NHA using Western blot analysis and immunocytochemistry with confocal laser scanning microscopy. In the next step of the study, we revealed c-lactam OH-Cbl as a potential non-toxic vitamin B12 antagonist in an in vivo model using zebrafish embryos. We believe that the presented results will contribute to a better understanding of the cellular mechanism underlying neurologic pathology due to cobalamin deficiency and will serve as a foundation for further studies.


Sign in / Sign up

Export Citation Format

Share Document