scholarly journals Effect of Cu Substrate Roughness and Sn Layer Thickness on Whisker Development from Sn Thin-Films

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3609 ◽  
Author(s):  
Balázs Illés ◽  
Tamás Hurtony ◽  
Olivér Krammer ◽  
Bálint Medgyes ◽  
Karel Dušek ◽  
...  

The effect of copper substrate roughness and tin layer thickness were investigated on whisker development in the case of Sn thin-films. Sn was vacuum-evaporated onto both unpolished and mechanically polished Cu substrates with 1 µm and 2 μm average layer thicknesses. The samples were stored in room conditions for 60 days. The considerable stress—developed by the rapid intermetallic layer formation—resulted in intensive whisker formation, even in some days after the layer deposition. The developed whiskers and the layer structure underneath them were investigated with both scanning electron microscopy and ion microscopy. The Sn thin-film deposited onto unpolished Cu substrate produced less but longer whiskers than that deposited onto polished Cu substrate. This phenomenon might be explained by the dependence of IML formation on the surface roughness of substrates. The formation of IML wedges is more likely on rougher Cu substrates than on polished ones. Furthermore, it was found that with the decrease of layer thickness, the development of nodule type whiskers increases due to the easier diffusion of other atoms into the whisker bodies.

2020 ◽  
Vol 31 (19) ◽  
pp. 16314-16323 ◽  
Author(s):  
Balázs Illés ◽  
Olivér Krammer ◽  
Tamás Hurtony ◽  
Karel Dušek ◽  
David Bušek ◽  
...  

Abstract The kinetics of Sn whisker growth was investigated on vacuum-evaporated Sn thin-films. Sn film layers were deposited on a Cu substrate with 0.5 and 1 µm thicknesses. The samples were stored in room conditions (22 ± 1 °C/50 ± 5RH%) for 60 days. The Sn whiskers and the Cu–Sn layer structure underneath them were investigated with both scanning electron and ion microscopy. Fast Cu–Sn intermetallic formation resulted in considerable mechanical stress in the Sn layer, which initiated intensive whisker growth right after the layer deposition. The thinner Sn layer produced twice many whiskers compared to the thicker one. The lengths of the filament-type whiskers were similar, but the growth characteristics differed. The thinner Sn layer performed the highest whisker growth rates during the first 7 days, while the thicker Sn layer increased the growth rate only after 7 days. This phenomenon was explained by the cross-correlation of the stress relaxation ability of Sn layers and the amount of Sn atoms for whisker growth. The very high filament whisker growth rates might be caused by the interface flow mechanism, which could be initiated by the intermetallic layer growth itself. Furthermore, a correlation was found between the type of the whiskers and the morphology of the intermetallic layer underneath.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2433 ◽  
Author(s):  
Werner Schlemmer ◽  
Armin Zankel ◽  
Katrin Niegelhell ◽  
Mathias Hobisch ◽  
Michael Süssenbacher ◽  
...  

This study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films. Trimethylsilyl cellulose (TMSC), a hydrophobic acid-labile cellulose derivative, was deposited on these substrates and subjected to spin coating. For all the synthetic polymer and metal substrates, rather homogenous films were obtained, where the thickness and the roughness of the films correlated with the substrate roughness and its surface free energy. A particular case was the TMSC layer on the copper foil, which exhibited superhydrophobicity caused by the microstructuring of the copper substrate. After the investigation of TMSC film formation, the conversion to cellulose using acidic vapors of HCl was attempted. While for the polymer foils, as well as for glass and silicon, rather homogenous and smooth cellulose films were obtained, for the metal foils, there is a competing reaction between the formation of metal chlorides and the generation of cellulose. We observed particles corresponding to the metal chlorides, while we could not detect any cellulose thin films after HCl treatment of the metal foils as proven by cross-section imaging using scanning electron microscopy (SEM).


2013 ◽  
Vol 531 ◽  
pp. 26-31 ◽  
Author(s):  
A.R. Ananda Sagari ◽  
Jari Malm ◽  
Mikko Laitinen ◽  
Paavo Rahkila ◽  
Ma Hongqiang ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1552 ◽  
Author(s):  
Weber ◽  
Graniel ◽  
Balme ◽  
Miele ◽  
Bechelany

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.


Author(s):  
Soumyarup Hait ◽  
Sajid Husain ◽  
Nanhe Kumar Gupta ◽  
Nilamani Behera ◽  
Ankit Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document