sn whiskers
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 935
Author(s):  
Noor Zaimah Mohd Mokhtar ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
Muhammad Mahyiddin Ramli ◽  
Jitrin Chaiprapa ◽  
...  

The investigation on tin (Sn) whiskers formation has been widely applied in the field of lead-free electronic packaging. This is due to the fact that use of the Sn–Pb finishes has converted to Pb-free finishes in the electronic industry. Sn whiskers can grow long enough to cause a short circuit, which affects electronic devices’ reliability. This study investigates Sn whiskers’ formation in the thin Sn–0.7Cu–0.05Ga Pb-free solder under the influence of electromigration and thermal ageing for surface finish applications. The samples were stored in ambient conditions for 1000 h before being exposed to electromigration and thermal ageing to study the corresponding whiskers’ growth. A scanning electron microscope (SEM) was used to study the Sn whiskers’ microstructure, while an optical microscope (OM) was utilized to investigate the IMC layers in the samples. The results show that the addition of 0.05 wt.% gallium (Ga) decreased the Sn whisker’s length and growth density while simultaneously refining the IMC layers. Synchrotron micro-XRF (µ-XRF) shows the existence and distribution of Ga addition in both electromigration and thermal ageing samples. The shear test was used to determine the solder alloys’ mechanical properties. As a result, the addition of Ga to the Sn–0.7Cu solder improved the fracture morphology of solder joints. In conclusion, Ga’s addition resulted in decreasing Sn whisker formation and refining of the IMCs while also increasing the shear strength of the Sn–0.7Cu solder by ~14%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1842
Author(s):  
Matic Jovičević-Klug ◽  
Patricia Jovičević-Klug ◽  
Tina Sever ◽  
Darja Feizpour ◽  
Bojan Podgornik

The elucidation of spontaneous growth of metal whiskers from metal surfaces is still ongoing, with the mainstream research conducted on Sn whiskers. This work reports on the discovery of Pb whisker growth from Bi-Mg-Pb solid pools found in common machinable aluminum alloy. The whiskers and hillocks display unique morphologies and complex growth that have not been documented beforehand. In contrast to typical understanding of whisker growth, the presented Pb whiskers show a clear nanocrystalline induced growth mechanism, which is a novel concept. Furthermore, the investigated whiskers are also found to be completely composed of nanocrystals throughout their entire length. The performed research gives new insight into nucleation and growth of metal whiskers, which raises new theoretical questions and challenges current theories of spontaneous metal whisker growth. Additionally, this work provides the first microscopic confirmation of recrystallization growth theory of whiskers that relates to oriented attachment of nanocrystals formed within an amorphous metallic matrix. The impact of mechanical stress, generated through Bi oxidation within the pools, is theoretically discussed with relation to the observed whisker and hillock growth. The newly discovered nanocrystalline growth provides a new step towards understanding spontaneous metal whisker growth and possibility of developing nanostructures for potential usage in sensing and electronics applications.


2021 ◽  
Vol 539 ◽  
pp. 148135
Author(s):  
Shuang Tian ◽  
Yushuang Liu ◽  
Qiang Ma ◽  
Peigen Zhang ◽  
Jian Zhou ◽  
...  

2021 ◽  
Vol 853 ◽  
pp. 157101
Author(s):  
Shuang Tian ◽  
Ruihua Cao ◽  
Jian Zhou ◽  
Feng Xue ◽  
Yushuang Liu ◽  
...  

2020 ◽  
Vol 31 (19) ◽  
pp. 16314-16323 ◽  
Author(s):  
Balázs Illés ◽  
Olivér Krammer ◽  
Tamás Hurtony ◽  
Karel Dušek ◽  
David Bušek ◽  
...  

Abstract The kinetics of Sn whisker growth was investigated on vacuum-evaporated Sn thin-films. Sn film layers were deposited on a Cu substrate with 0.5 and 1 µm thicknesses. The samples were stored in room conditions (22 ± 1 °C/50 ± 5RH%) for 60 days. The Sn whiskers and the Cu–Sn layer structure underneath them were investigated with both scanning electron and ion microscopy. Fast Cu–Sn intermetallic formation resulted in considerable mechanical stress in the Sn layer, which initiated intensive whisker growth right after the layer deposition. The thinner Sn layer produced twice many whiskers compared to the thicker one. The lengths of the filament-type whiskers were similar, but the growth characteristics differed. The thinner Sn layer performed the highest whisker growth rates during the first 7 days, while the thicker Sn layer increased the growth rate only after 7 days. This phenomenon was explained by the cross-correlation of the stress relaxation ability of Sn layers and the amount of Sn atoms for whisker growth. The very high filament whisker growth rates might be caused by the interface flow mechanism, which could be initiated by the intermetallic layer growth itself. Furthermore, a correlation was found between the type of the whiskers and the morphology of the intermetallic layer underneath.


2019 ◽  
Vol 83 (8) ◽  
pp. 273-281
Author(s):  
Yoshinori Sakamoto ◽  
Kazuto Tsuda ◽  
Wataru Yamazaki ◽  
Masaomi Shimura ◽  
Sotomi Ishihara

2018 ◽  
Vol 280 ◽  
pp. 151-156 ◽  
Author(s):  
Aimi Noorliyana Hashim ◽  
Mohd Arif Anuar Mohd Salleh

Since the environmental regulations of Reduction of Hazardous Substances (RoHS) directive came into effect in Europe and Asia on July 1, 2006, requiring the removal of any lead (Pb) content from the electronics industry, the issue of tin (Sn) whisker growth from pure Sn and SnPb-free alloys has become one of the most imperative issues that need to be resolved. Moreover, with the increasing demand for electronics miniaturization, Sn whisker growth is a severe threat to the reliability of microelectronic devices. Sn whiskers grow spontaneously from an electrodeposited tin coating on a copper substrate at room temperature, which can lead to well-documented system failures in electronics industries. The Sn whisker phenomenon unavoidably gives rise to troubles. This paper briefly reviews to better understand the fundamental properties of Sn whisker growth and at the same time discover the effective mitigation practices for whisker growth in green electronic devices. It is generally accepted that compressive stress generated from the growth of Cu6Sn5 intermetallic compound (IMC) is the primary driving force for Sn whisker growth during room temperature storage. It is, therefore, important to determine that the relationship between IMC growth and Sn whisker growth. Reduction of stress in the IMC layer can therefore reduce the driving force for whisker formation and be used as a means for whisker mitigation. To date, there are no successful methods that can suppress the growth of Sn whisker as efficient as Pb addition. It is hoped that the Sn whisker growth mechanisms are understood better in the future, with better measuring and monitoring methodologies and systems being developed, the real solutions may be eventually developed to eliminate or mitigate the Sn whisker problems of green reliability lead-free electronic assemblies.


2018 ◽  
Vol 280 ◽  
pp. 175-180
Author(s):  
N. Mohd Mokhtar ◽  
Mohd Arif Anuar Mohd Salleh

Sn whisker growth on Cu substrate Pb-free solder is a serious problem in electric and electronic devices and as well as in aerospace applications. Due to the concern on the toxicity of lead by Restriction of Hazardous Substances Directive (RoHS), new lead free materials have been developed, and this resulted in the resurfacing of Sn whisker. The compressive stress, corrosionand surface oxide have been identified as the driving force for Sn whisker formation induced by mechanical alloying and oxidation. In this paper, we report the study to understand the mechanism of Sn whisker growth that control whisker formation on Sn finished.Based on the review, a preliminary conclusion has been made, where the analysis of the topography and microstructural characterization can be determined by evaluating under various environmental influences.Furthermore, the whisker growth happening on lead-free soldered can be considerably reduced by controlling the compressive stress in the solder which initiates the growth of intermetallic compounds (IMCs).


2017 ◽  
Vol 79 ◽  
pp. 314-320 ◽  
Author(s):  
Renuka Vallabhaneni ◽  
Ehsan Izadi ◽  
Carl R. Mayer ◽  
C. Shashank Kaira ◽  
Sudhanshu S. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document