scholarly journals Evaluation of Thermally Treated Calotropis Procera Fiber for the Removal of Crude Oil on the Water Surface

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3894
Author(s):  
Sobral Hilário ◽  
Batista dos Anjos ◽  
Borges de Moraes Juviniano ◽  
da Silva

Biosorbents have been highlighted as an alternative method for the removal of contaminants from spills or leaks of oil and its derivatives, since they are biodegradable, are highly available, low-cost, and have a good sorption capacity. This research investigated the sorption capacity of Calotropis procera fiber in natura (CP) and thermally treated (150 °C and 200 °C) for crude oil removal and recovery. The oil sorption tests were carried out in a dry and water (layer) static systems. The assays revealed that CP fiber has excellent hydrophobic-oil properties and good crude oil sorption capacity, about 75 times its own weight (76.32 g/g). The results of the treated fibers, CPT150 and CPT200, showed oil sorption capacities (in 24 h) higher than CP, between 94.31–103.37 g/g and 124.60–180.95 g/g, respectively. The results from sample CPT200 showed that it can be an excellent biosorbent for the removal of crude oil and other derivatives due to its high hydrophobicity, great reuse/resorption capacity, and ability to retain oil within the fiber lumens. Thus, it can be applied in the recovery, cleaning, and removal of petroleum products and its derivatives from spills and leaks in the future.

2014 ◽  
Vol 70 (7) ◽  
pp. 1220-1228 ◽  
Author(s):  
Robabeh Asadpour ◽  
Nasiman Bin Sapari ◽  
Mohamed Hasnain Isa ◽  
Kalu Uka Orji

Oil spills generally cause worldwide concern due to their detrimental effects on the environment and the economy. An assortment of commercial systems has been developed to control these spills, including the use of agricultural wastes as sorbents. This work deals with raw and modified mangrove barks (Rhizophora apiculata), an industrial lignocellulosic waste, as a low cost adsorbent for oil-product-spill cleanup in the aquatic environment. Mangrove bark was modified using fatty acids (oleic acid and palmitic acid) to improve its adsorption capacity. The oil sorption capacity of the modified bark was studied and compared with that of the raw bark. Kinetic tests were conducted with a series of contact times. The influence of particle size, oil dosage, pH and temperature on oil sorption capacity was investigated. The results showed that oleic acid treated bark has a higher sorption capacity (2,860.00 ± 2.00 mg/g) than untreated bark for Tapis crude oil. A correlation between surface functional groups, morphology and surface area of the adsorbent was studied by Fourier transform infrared spectrum, field emission scanning electron microscopy images and Brunauer–Emmett–Teller analysis. Isotherm study was conducted using the Langmuir and Freundlich isotherm models. The result showed that adsorption of crude oil on treated mangrove bark could be best described by the Langmuir model.


Author(s):  
S. A. Osemeahon ◽  
B. J. Dimas

This study will present a novel method for crude oil remediation in water. The research was carried out to explore the possible application of Sterculia setigera as a potential biodegradable sorbent for oil cleanup from water. The crude Sterculia setigera (CSS), retted Sterculia setigera (RSS) and bleached Sterculia setigera (PFSS) were subjected to sorption studies to optimize their sorption capacity. The results revealed that the efficiency of sorbent to remove crude oil from water is related to the sorbent weight, contact time, initial oil concentration and temperature of sorption. It was found that increase in sorbent weight led to increase in sorption capacity from 3.75 -5.12 g/g, 4.72- 6.41 g/g, and 4.61-6.18 g/g in CSS, RSS and PFSS respectively. Oil sorption capacity increases by 21-27% when oil concentration was varied from 5-20 g. Contact time played a role only at the beginning of oil sorption study and became less important near equilibrium. Sorption time was varied from 10-70 min and the highest sorption capacity was recorded at 30 min. then it gradually reduced and became steady. The effect of temperature was investigated from 30-60°C. A decreased of 34-37% in oil sorption capacity was observed with increased in temperature.  RSS exhibit lower water sorption when compared to the other sorbents. The sorbents showed good reusability after 8 cycles, with less than 50% reduction in sorption capacity and good reusability. Sterculia setigera demonstrated good potentials for utilization as natural sorbent for oil cleanup.


2017 ◽  
pp. 1032-1045
Author(s):  
Dmitry Porshnov ◽  
Maris Klavins

The growing use and transport of crude oil and oil products has led to an increasing amount of spillages of various scales. In the event of an oil spill, it is important to stop the spill from spreading and to clean up the polluted environment. One of the possible ways of treating the polluted areas is the use of oil sorbents. The sorbents used for collecting oil in case of oil spills are mostly synthetic, which limits the possibilities of their disposal. The aim of our study is to investigate the possible use of peat and its modification products for oil and other hydrocarbon sorption. Peat is a prospective material for oil sorption because it has such advantages as low cost, biodegradability and relatively high parameters of specific surface area and porosity. At the same time, peat also has disadvantages, such as poor buoyancy characteristics, relatively low oil sorption capacity and low hydrophobicity. We have studied the sorption characteristics of native high-moor peat with different botanical compositions and levels of decomposition, as well as the effect of thermal treatment on the oil sorption capacity, buoyancy and water sorption capacity of peat in comparison with the effect achieved by means of two other methods of chemical modification: silylation and methylation. We have determined the optimal conditions for thermal modification of peat to have an effect on hydrocarbon sorption characteristics. Using the method of IR spectroscopy, we have investigated specific structural changes in peat, which resulted in the improvement of its sorptive characteristics.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5246-5263
Author(s):  
Raoni Batista dos Anjos ◽  
Larissa Sobral Hilário ◽  
Henrique Borges de Moraes Juviniano ◽  
Djalma Ribeiro da Silva

Calotropis procera (CP) fiber is a natural and renewable material with great lumen and hydrophobic-oleophilic characteristics, providing it with a good oil absorption capacity. In order to increase the absorption efficiency of organic oils and solvents, CP fiber was treated with either 0.1 M NaOH (CPNaOH), 1% NaClO2 (CPNaClO2), or hydrothermal conditions (CPHT) in an effort to improve its ability to remove crude oil from leaks or spills. The fibers were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with field emission (SEM-FEG), and wettability for water and diesel. The fibers CPHT, CPNaOH, and CPNaClO2 showed excellent hydrophobic-oleophilic properties and good crude oil absorption capacity in water 99.2 g/g, 103.9 g/g, and 92.0 g/g. The absorption after 60 min for most fibers in dry systems or with a layer of oil floating on water exceeded 90% of its absorption capacity for the time of 1440 min. The CPNaOH after 6 runs absorbed 445.8 g of crude oil per gram of fiber. Based on the results, the treated fibers can be considered an alternative for the removal of oil from leaks and spills due to the high availability and excellent absorption property for various oils.


2012 ◽  
Vol 15 (1) ◽  
pp. 57 ◽  
Author(s):  
K.K. Kudaybergenov ◽  
E.K. Ongarbayev ◽  
Z.A. Mansurov

Agricultural byproducts or residues are widely produced in Kazakhstan and their utilization as a sorbent material for petroleum spill can be developed as low cost, high tech environmental technology. Rice husk, an agricultural waste, was used as petroleum sorbent material. The present study examines the sorption capacity of thermally treated rice husk for different petroleum products. Results showed that the petroleum sorption capacity of this material prepared at 700 ºC was 15 g/g for heavy crude petroleum. The material obtained by thermal treatment of rice husk has very good buoyancy characteristics, high petroleum sorption capacity and high hydrophobicity. The effects of heating temperature, contact time and petroleum density on the petroleum sorption capacity of thermally treated rice husks were further studied on the basis of phase composition, microstructure and morphology using X-ray diffraction analysis, FTIR spectrometry, optical digital microscopy and scanning electron microscopy (SEM). The results of the SEM and optical microscopy studies strongly indicate that thermal treatment is a suitable method to improve structure of husk particles regarding porosity compared to virgin samples. The research provides the basis for development of a new environmental material with optimal characteristics, providing efficient sorption of petroleum and petroleum products from aqueous medium.


Author(s):  
B. J. Dimas ◽  
S. A. Osemeahon

In the present study, the efficiency of Annona senegalensis fiber to remove crude oil from aqueous solution was evaluated. The crude Annona senegalensis (CAS), retted Annona senegalensis (RAS) and bleach Annona senegalensis (PFAS) were subjected to sorption studies to optimize their sorption capacity. The results revealed that the efficiency of sorbent to remove crude oil from water is related to the sorbent weight, contact time, initial oil concentration and temperature of sorption. It was found out that increase in sorbent weight led to increase in sorption capacity from 3.99-5.25g/g, 5.51-7.12g/g, and 5.01-6.72g/g in CAS, RAS and PFAS respectively. Increased in Initial oil concentration also increased the oil sorption capacity by 20-21% until it reach equilibrium. Sorption time was varied from 10, 20, 30, 40, 50, 60 and 70 minutes and the highest sorption capacity was recorded at 30 minutes before a gradual decreased was observed. Sorption capacity decreased with increased in temperature above 400C. The sorbent exhibited good reusability after 8 cycles, with less than 50 % reduction in sorption capacity. The kinetics of crude oil sorption onto CAS, RAS and PFAS follow the second- order model with correlation coefficients higher than 0.99. The results obtained revealed that crude oil adsorption onto the Annona senegalensis fiber can be used as an effective adsorbent to oil spill cleanup in water bodies.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


Author(s):  
Larissa S. Martins ◽  
Noelle C. Zanini ◽  
Alexandre L. S. Botelho ◽  
Daniella R. Mulinari
Keyword(s):  

Author(s):  
Aviral Kumar Tiwari ◽  
Muhammad Tahir Suleman ◽  
Subhan Ullah ◽  
Muhammad Shahbaz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document