scholarly journals Sorption of Hydrocarbons on Peat, and Possibilities for Using Peat-Based Oil Sorbent for Treatment of Polluted Areas

2017 ◽  
pp. 1032-1045
Author(s):  
Dmitry Porshnov ◽  
Maris Klavins

The growing use and transport of crude oil and oil products has led to an increasing amount of spillages of various scales. In the event of an oil spill, it is important to stop the spill from spreading and to clean up the polluted environment. One of the possible ways of treating the polluted areas is the use of oil sorbents. The sorbents used for collecting oil in case of oil spills are mostly synthetic, which limits the possibilities of their disposal. The aim of our study is to investigate the possible use of peat and its modification products for oil and other hydrocarbon sorption. Peat is a prospective material for oil sorption because it has such advantages as low cost, biodegradability and relatively high parameters of specific surface area and porosity. At the same time, peat also has disadvantages, such as poor buoyancy characteristics, relatively low oil sorption capacity and low hydrophobicity. We have studied the sorption characteristics of native high-moor peat with different botanical compositions and levels of decomposition, as well as the effect of thermal treatment on the oil sorption capacity, buoyancy and water sorption capacity of peat in comparison with the effect achieved by means of two other methods of chemical modification: silylation and methylation. We have determined the optimal conditions for thermal modification of peat to have an effect on hydrocarbon sorption characteristics. Using the method of IR spectroscopy, we have investigated specific structural changes in peat, which resulted in the improvement of its sorptive characteristics.

2019 ◽  
Vol 89 (19-20) ◽  
pp. 4186-4194 ◽  
Author(s):  
Yanfang Xu ◽  
Qincheng Su ◽  
Hua Shen ◽  
Guangbiao Xu

Oil spills have become a global concern due to their environmental and economic impact. Various methods, including the use of fibers as sorbents, have been developed for oil spill concern. Poplar seed fiber is a plant biomass that has the potential of being used as low-cost sorbent. In this study, the physicochemical and sorption characteristics of poplar seed fiber as an oil sorbent was evaluated. Fourier transform infrared and scanning electron microscopy analyses showed that poplar seed fiber was a lignocellulosic material with smooth surface and hollow lumen. Oil sorption tests showed that loose poplar seed fibers could absorb 53.74 g/g of diesel oil, 65.85 g/g of motor oil and 67.97 g/g of vegetable oil, which were higher than that of kapok and cotton fiber. The availability of void fraction inside the fiber assembly coupled with hollow fiber structure and hydrophobicity/oleophilicity of poplar seed fiber were the main contributing factors. Moreover, the oil sorption kinetics of poplar seed fiber, including the effect of packing density of fiber assembly, oil types on sorption capacity and rate, was analyzed by a wicking method. Results illustrated that the oil sorption capacity was closely related to the packing density of fiber assembly, with an apparent decrease when the packing density changed from 0.05 g/cm3 to 0.09 g/cm3. For sorption rate, the highest oil sorption coefficients were observed for diesel oil, of 0.36 g2/s, 0.32 g2/s and 0.30 g2/s at the packing densities of 0.05 g/cm3, 0.07 g/cm3 and 0.09 g/cm3, respectively, which were about 10 times higher than that of vegetable oil and 70 times higher than that of motor oil.


2014 ◽  
Vol 70 (7) ◽  
pp. 1220-1228 ◽  
Author(s):  
Robabeh Asadpour ◽  
Nasiman Bin Sapari ◽  
Mohamed Hasnain Isa ◽  
Kalu Uka Orji

Oil spills generally cause worldwide concern due to their detrimental effects on the environment and the economy. An assortment of commercial systems has been developed to control these spills, including the use of agricultural wastes as sorbents. This work deals with raw and modified mangrove barks (Rhizophora apiculata), an industrial lignocellulosic waste, as a low cost adsorbent for oil-product-spill cleanup in the aquatic environment. Mangrove bark was modified using fatty acids (oleic acid and palmitic acid) to improve its adsorption capacity. The oil sorption capacity of the modified bark was studied and compared with that of the raw bark. Kinetic tests were conducted with a series of contact times. The influence of particle size, oil dosage, pH and temperature on oil sorption capacity was investigated. The results showed that oleic acid treated bark has a higher sorption capacity (2,860.00 ± 2.00 mg/g) than untreated bark for Tapis crude oil. A correlation between surface functional groups, morphology and surface area of the adsorbent was studied by Fourier transform infrared spectrum, field emission scanning electron microscopy images and Brunauer–Emmett–Teller analysis. Isotherm study was conducted using the Langmuir and Freundlich isotherm models. The result showed that adsorption of crude oil on treated mangrove bark could be best described by the Langmuir model.


2014 ◽  
Vol 1020 ◽  
pp. 823-826
Author(s):  
G.Sh. Hovsepyan ◽  
M.A. Kalantaryan ◽  
T.V. Yedoyan

The aim of this paper is to study the possibility of expanded obsidian and its modified product use for oil sorption, in that tetraethoxisilane (TEOS) has been used as a modifier. The optimal concentration of the modifier was determined by 50 per cent weight of expanded obsidian. The expanded obsidian was previously activated with 0,1 M solution of hydrochloric acid. IR spectrometry was used to characterise structural changes in the modified expanded obsidian samples. To determine water sorption capacity a series of experiments has been carried out. The analysis of obtained experimental data showed that after surface modification of expanded obsidian water capacity is reduced 3 times after the surface modification of EO.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3894
Author(s):  
Sobral Hilário ◽  
Batista dos Anjos ◽  
Borges de Moraes Juviniano ◽  
da Silva

Biosorbents have been highlighted as an alternative method for the removal of contaminants from spills or leaks of oil and its derivatives, since they are biodegradable, are highly available, low-cost, and have a good sorption capacity. This research investigated the sorption capacity of Calotropis procera fiber in natura (CP) and thermally treated (150 °C and 200 °C) for crude oil removal and recovery. The oil sorption tests were carried out in a dry and water (layer) static systems. The assays revealed that CP fiber has excellent hydrophobic-oil properties and good crude oil sorption capacity, about 75 times its own weight (76.32 g/g). The results of the treated fibers, CPT150 and CPT200, showed oil sorption capacities (in 24 h) higher than CP, between 94.31–103.37 g/g and 124.60–180.95 g/g, respectively. The results from sample CPT200 showed that it can be an excellent biosorbent for the removal of crude oil and other derivatives due to its high hydrophobicity, great reuse/resorption capacity, and ability to retain oil within the fiber lumens. Thus, it can be applied in the recovery, cleaning, and removal of petroleum products and its derivatives from spills and leaks in the future.


2014 ◽  
Vol 567 ◽  
pp. 74-79 ◽  
Author(s):  
Asadpour Robabeh ◽  
Nasiman Sapari ◽  
Mohamed Hasnain Isa ◽  
Kalu Uka Orji

Today oil spills generally cause worldwide worry due to their damaging effects on environment. Use of agricultural wastes such as raw and modified mangrove barks (RhizophoraApiculata), as an abundant and low cost adsorbent for oil-products spill cleanup in aquatic systems, has been developed to control these spills. Sorption capacity can improve by modification of adsorbent. The modification significantly increased the hydrophobicity of the adsorbent. The raw mangrove bark was modified using fatty acid (Palmitic acid) to improve its adsorption capacity. Oil sorption capacity of the modified bark was studied and compared with the raw bark. Kinetic tests were conducted with a series of contact time. The kinetic studies show good correlation coefficients for a pseudo-first-order kinetic model. A correlation between surface functional groups of the adsorbent was studied by FTIR spectrum. The results gave the maximum adsorption capacity of 2640.00 ± 2.00 mg/g for Palmitic acid treated bark (PTB). The prepared adsorbent revealed the potential to use as a low-cost adsorbent in oil-spill clean-up.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
A. O. Odeh ◽  
L. A. Okpaire

The rapid growth of the automobile industry has led to the abundance and indiscriminate disposal of waste tyres which causes environmental pollution and also lead to serious health problems. The absorption of crude oil using waste tyre powder (WTP) was investigated. A three variable Box-Behnken design was used to study the effect of particle size, contact time and temperature on the oil sorption capacity of WTP. Optimization was carried out using Response Surface Methodology (RSM). A quadratic model was obtained to predict the oil sorption capacity of WTP as a function of particle size, contact time and temperature. The optimum conditions of the sorption process obtained from RSM gave a temperature of 30.19oC, contact time 59.04 mins and particle size 0.15mm. A maximum oil sorption capacity of 4.71 g/g was obtained at these optimized conditions. Also, a comparison between the oil sorption efficiency of fresh tyre powder and regenerated tyre powder subjected to the same conditions of particle size, contact time and temperature were carried out. It was shown that the oil sorption capacity of the fresh tyre powder was higher than that of regenerated tyre powder.


2016 ◽  
Vol 8 (4) ◽  
pp. 397-402
Author(s):  
Eglė Budriūtė ◽  
Vaidotas Vaišis ◽  
Donatas Mikulskis

Effective clean-up of oil spills due to their negative environmental and economic impact is of capital importance. Clean-up of oil by sorption is considered one of the most desirable choices, because oil can be completely removed without causing any secondary pollution. Natural organic sorbents had been investigated and developed to control oil products‘ spills. Plant biomass is a renewable resource which can be converted into various materials and energy. Hemp (USO-31), as a textile industry waste, was used as an oil product sorbent material. The present study examines hemp sorption capacity of water using different fractions of hemp raw material to be used in oil/water mixtures. The experimental research revealed that water sorption capacity depends on fraction size and sorption time. The results of water sorption capacity of 2.5 and 5.0 mm after 1440 min were 4.74 and 4.67 g water/g dry sorbent, respectively. Labai svarbu efektyviai likviduoti išsiliejusius naftos produktus dėl jų neigiamo poveikio aplinkai ir ekonomikai. Naftos produktų valymo metodas pasitelkiant sorbentus yra laikomas vienu iš geriau­sių pasirinkimų, nes produktai yra absorbuojami sorbentų, nesukeliant jokios antrinės taršos. Natūralūs organiniai sorbentai buvo tiriami ir tobulinami, siekiant kontroliuoti naftos produktų išsiliejimus. Augalų biomasė yra atsinaujinantis išteklis, kuris gali būti naudojamas įvairioms medžiagoms ir energijai išgauti. Kanapių spaliai (USO-31), tekstilės pramonės atlieka, buvo tiriami kaip naftos produktų sorbentas. Buvo išnagrinėta kanapių vandens sorbcija naudojant įvairias šios medžiagos frakcijas. Eksperimentinis tyrimas parodė, kad vandens sorbcija priklauso nuo frakcijos dydžio ir sorbcijos laiko. Tyrimų metu buvo nustatyta vandens sorbcijos geba – 4,74 ir 4,67 g vandens/g sauso sorbento 2,5 ir 5,0 mm pavyzdžiams po 1440 min atitinkamai.


2016 ◽  
Vol 717 ◽  
pp. 104-111 ◽  
Author(s):  
Mahmoud M. Bubakir ◽  
Wan Lin He ◽  
Hao Yi Li ◽  
Yu Mei Ding ◽  
Wei Min Yang

Marine Oil spills have become a serious environmental problem, and contribute to severe impacts and economic losses. Fast and efficient cleanup of oil from marine environment is vital. The use of sorbents is one of the most efficient techniques in removing oil from water. In this work, pure polypropylene (PP) ultrafine fibers with 2 μm diameter were prepared by air assisted melt electrospinning device to be used as oil sorbent. Two fiber samples were used in this study, fluffy, cotton like appearance and oriented, cloth like appearance with different porosities. The influence of temperature change on oil/water mixture was studied. Fluffy fibers showed a better performance in sorption capacity. Results indicated that change in temperature was an important factor in determining the sorption capacity of the fibers. Additionally, in contrast to solution electrospinning, melt electrospinning is safer, cost effective and environmental friendly because of solvents elimination.


2014 ◽  
Vol 26 (3) ◽  
pp. 151-158 ◽  
Author(s):  
Young-Hee Lee ◽  
Eun-Jin Lee ◽  
Gap-Shik Chang ◽  
Dong-Jin Lee ◽  
Young-Jin Jung ◽  
...  

Author(s):  
A. Safonov ◽  
N. Andriushchenko ◽  
N. Popova ◽  
K. Boldyrev

Проведен анализ сорбционных характеристик природных материалов (вермикулит, керамзит, перлит, цеолит Трейд ) при очистке кадмий- и хромсодержащих сточных вод с высокой нагрузкой по ХПК. Установлено, что цеолит обладает максимальными сорбционными характеристиками для Cd и Cr и наименьшим биологическим обрастанием. При использовании вермикулита и керамзита или смесей на их основе можно ожидать увеличения сорбционной емкости для Cd и Сr при микробном обрастании, неизбежно происходящем в условиях контакта с водами, загрязненными органическими соединениями и биогенами. При этом биообрастание может повысить иммобилизационную способность материалов для редоксзависимых металлов за счет ферментативных ресурсов бактериальных клеток, использующих их в качестве акцепторов электронов. Эффект микробного обрастания разнонаправленно изменял параметры материалов: для Cr в большинстве случаев уменьшение и для Cd значительное увеличение. При этом дополнительным эффектом иммобилизации Cr является его биологическое восстановление биопленками. Варьируя состав сорбционного материала, можно подбирать смеси, оптимально подходящие для очистки вод инфильтратов с полигонов твердых бытовых отходов с высокой нагрузкой по ХПК и биогенным элементам как при использовании in situ, так и в системах на поверхности.The analysis of the sorption characteristics of natural materials (vermiculite, expanded clay, perlite, Trade zeolite) during the purification of cadmium and chromium-containing leachate with a high COD load was carried out. It was determined that zeolite had the maximum sorption capacity for Cd and Cr and the lowest biological fouling. When using vermiculite and expanded clay or mixtures on their basis, one can expect an increase in the sorption capacity for Cd and Cr during microbial fouling that inevitably occurs during contacting with water polluted with organic compounds and nutrients. In this case biofouling can increase the immobilization properties of materials for redox-dependent metals due to the enzymatic resources of bacterial cells that use them as electron acceptors. The effect of microbial fouling changed the parameters of materials in different directions: for Cr, in most cases, downward, and for Cd, significantly upward. Moreover, chromium biological recovery by biofilms is an additional effect of immobilization. Varying the composition of the sorption material provides for selecting mixtures that are optimally suitable for the purification of leachates from solid waste landfills with high COD and nutrients load, both when used in situ and in surface systems.


Sign in / Sign up

Export Citation Format

Share Document