scholarly journals Fabrication, Structure and Mechanical and Ultrasonic Properties of Medical Ti6Al4V Alloys Part I: Microstructure and Mechanical Properties of Ti6Al4V Alloys Suitable for Ultrasonic Scalpel

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 478
Author(s):  
Zheyu He ◽  
Hao He ◽  
Jia Lou ◽  
Yimin Li ◽  
Dongyang Li ◽  
...  

Ti6Al4V alloy has been considered as a key component used in ultrasonic scalpels. In this series of papers, the fabrication, structure, and mechanical and ultrasonic properties of medical Ti6Al4V alloys suitable for ultrasonic scalpel are studied systemically. These alloys with low elastic modulus and present a typical bimodal microstructure with relatively high β phase content (~40%) and lamellar α thickness of ≤ 0.9 µm. In the first paper, the relationship between the microstructure and mechanical properties of hot-rolled Ti6Al4V alloys treated by heating treatment is discussed. In the second paper, the dependence of the ultrasonic properties on the microstructure of the heat-treated Ti6Al4V alloys is reported. With increasing solid solution temperature, the content and size of the primary α phase decrease. In contrast, the content and size of the lamellar α phase increase. Additionally, the β phase content first increases and then decreases. The microstructure of Ti6Al4V alloys could be slightly changed by aging treatment. When the solid solution treatment temperature increases to 980 °C from 960 °C, the average size of the lamellar α phase in the alloys increases by 1.1 µm. This results in a decrease in the average yield strength (93 MPa). The elastic modulus of alloys is mainly controlled by the β phase content. The microstructure of alloys by solution-treatment at 960 °C shows the highest β phase content and lowest average elastic modulus of 99.69 GPa, resulting in the minimum resonant frequency (55.06 kHz) and the highest average amplitude (21.48 µm) of the alloys at the length of 41.25 mm.

2005 ◽  
Vol 488-489 ◽  
pp. 151-154
Author(s):  
Weichao Zheng ◽  
Xiao Li Sun ◽  
Peijie Li ◽  
Daben Zeng ◽  
L.B. Ber

Effect of heat treatment on the microstructure and mechanical properties of high purity MA2-1(Mg-5wt.%Al-1wt.%Zn-0.4wt.%Mn) alloy sheet were investigated. X-ray diffraction analysis indicated that the microstructure of high purity MA2-1 alloy sheet annealed consisted of α-Mg solid solution, β (Mg17Al12) phase and Al-Mn phases such as Al6Mn and Al10Mn3. β phase dissolved into α-Mg solid solution during the solution treatment and formed supersaturated α-Mg solid solution. After aging at the temperatures of 423 K, 473 K and 523 K for 12 hours, β phase precipitated from the supersaturated α-Mg solid solution. Optical microscope observation found that the grain size of the MA2-1 alloy sheet became larger after heat treatment. As a result, the mechanical properties of the MA2-1 alloy sheet such as the tensile strength and yield strength declined after the heat treatment.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 284
Author(s):  
Zheyu He ◽  
Hao He ◽  
Jia Lou ◽  
Yimin Li ◽  
Dongyang Li ◽  
...  

In this study, the ultrasonic resonance parameters of Ti6Al4V alloys under different heat treatments are measured by an impedance analyzer. The amplitude of the specimens is measured experimentally by means of optical microscope and image analysis software. These results show that the ultrasonic properties of Ti6Al4V alloys are closely related to β phase content and elastic modulus of the alloys. The highest volume fraction of the β phase appears in the specimen treated by solid solution treatment at 960 °C is 40.2%. These alloys present the lowest average elastic modulus (~99.69 GPa) and the minimum resonant frequency (55.06 kHz) and the highest average amplitude (21.48 µm) when the testing sample length is 41.25 mm. These findings can be used to guide the design of medical Ti6Al4V alloys for ultrasonic scalpels.


2014 ◽  
Vol 1061-1062 ◽  
pp. 13-16
Author(s):  
Zhi Chao Liu ◽  
Yao Li ◽  
Jun Jie Yang

Effect of the solid-solution treatment on the structures and properties of the die-casting AZ91D alloy with mixed rare-earth elements was explored.The results show that the the tensile strength and the elongation ratio δ have been improved by solid-solution treatment.The higher the treatment temperature was,the better the improvement were.With the increase of the temperature,the content of β phase was lower when those of M-RE compound and the refinement α phase were higher.The tensile strength can reach 304.74Mpa and the elongation ratio can reach 11% after the solid-solution treatment of 370°C×16h.


2011 ◽  
Vol 197-198 ◽  
pp. 1524-1527 ◽  
Author(s):  
Hong Bo Dong ◽  
Xin Yang

The effects of heat treatment process on the microstructure and mechanical properties of TC4 alloy were investigated. The double shear and tensile tests were carried out by using the 12mm diameter standard specimens after solution treatment at 520°С for 1.5h and water quenching, followed by aging at 480-540°С for 8h. The microstructure and facture surface were analyzed using the equipment of metallurgical microscope and scanning electron microscopy. The results show that TC4 alloy show the best comprehensive performances after solution treatment at 940°С for 1.5h, aging at 520°С for 8h; the tensile specimens display a typical ductile fracture with oval dimples of various sizes; the microstructures with clear grain boundary and obvious lamellar structure are observed at room temperature. It indicates that the excellent comprehensive properties can be obtained by controlling the grain size of primary α phase and the morphology structure and amount of the secondary α phase at optimized aging temperature.


2010 ◽  
Vol 129-131 ◽  
pp. 886-890
Author(s):  
Da Wei Cui

The influence of solution annealing on the microstructure and mechanical properties of high nitrogen Fe-Cr-Mn-Mo-N austenitic stainless steels prepared by MIM was investigated. The results show that the solution treatment can improve the microstructure and properties of the stainless steels significantly. The sintered specimens before solution annealing consist of γ-austenite and embrittling intergranular Cr2N precipitates, showing a low mechanical property. After solid solution annealing, the specimens reveal a fully austenitic structure without any intergranular nitrides, whose tensile properties are much higher than those without solution annealing, which is attributed to the elimination of the nitride precipitation along the grain boundaries and the greater amount of nitrogen retained in solid solution. A mixed mode of intergranular and dimple fracture happen to the specimens before solid solution treatment, while a completely tough fracture of dimple happen to those after solid solution treatment.


2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.


Sign in / Sign up

Export Citation Format

Share Document