Effect of the Solid-Solution Treatment on the Die-Casting Structures and Properties of Commercial RE-AZ91D Mg Alloy

2014 ◽  
Vol 1061-1062 ◽  
pp. 13-16
Author(s):  
Zhi Chao Liu ◽  
Yao Li ◽  
Jun Jie Yang

Effect of the solid-solution treatment on the structures and properties of the die-casting AZ91D alloy with mixed rare-earth elements was explored.The results show that the the tensile strength and the elongation ratio δ have been improved by solid-solution treatment.The higher the treatment temperature was,the better the improvement were.With the increase of the temperature,the content of β phase was lower when those of M-RE compound and the refinement α phase were higher.The tensile strength can reach 304.74Mpa and the elongation ratio can reach 11% after the solid-solution treatment of 370°C×16h.

2012 ◽  
Vol 476-478 ◽  
pp. 109-113
Author(s):  
Yao Li ◽  
Jun Jie Yang ◽  
Wu Xin Yu ◽  
Ping Xue ◽  
Zhi Jiang Zuo ◽  
...  

Effect of the solid-solution treatment on the casting structures and properties of the die-casting Mg alloy was explored through the way of adding mixed rare earths Y, Gd and Nd into the commercial Re-AZ91 Mg alloy . The results show that the solid-solution treatment could improve effectively the microstructures of the alloy, and Mg17Al12 phrase on the grain boundaries could transform from network struture into dotlike or granular one. At the same time, the compounds on the grain boundaries were less than those before the solid-solution treatment, the compounds were dispersed inside the grain . Both the microstructures and the mechanics properties of the alloy could be improved remarkably, and also, the tensile strength σb could reach over 280MPa, the elongation ratio δ over 9% when the temperature of the solid-solution treatment was between 270°C and 410°C. When the temperature of the solid-solution treatment exceeded 420°C, coarse Al-RE compounds would be formed inside the alloy, which could reduce the mechanics properties of AZ91 Mg Alloy.


2014 ◽  
Vol 881-883 ◽  
pp. 1588-1591
Author(s):  
Quan Ming Liu ◽  
Zhao Hui Zhang ◽  
Hai Ying Yang ◽  
Shi Feng Liu

The effects of solid solution temperature on the structures and properties of TC16 titanium alloy bars that made solid solution treatment in 780°C, 800°C, 850°C, 900°C, respectively, the processing time for 30min, then cooled in the air were studied. The results show that during solid solution treatment under 800°C, the alloy structures are the primary ɑ phase and the metastable β phase, while solid solution temperature rise to 800°C, the alloy structures begin to appear ɑ" martensite phase. With the increase of solid solution temperature, the alloy grain grow up somewhat, material tensile strength increases gradually, yield strength firstly decreases and then increases, elongation at break firstly increases and then decreases, percentage reduction of area at break decreases gradually. Solid solution state of TC16 titanium alloy bars are not suitable for cold heading forming, strengthening the titanium alloy must be subsequent artificial aging treatment.


2011 ◽  
Vol 378-379 ◽  
pp. 744-747 ◽  
Author(s):  
Jeong Min Kim ◽  
Joon Sik Park ◽  
Ho Seob Yun ◽  
Seung Jin Lee ◽  
Seong Uk An

Cast IN738LC alloy mainly consists of primary gamma matrix, gamma prime precipitates, and carbides. SEM-EDS analysis results suggested that most of the carbides are MC type ones that possess high Ti or Ta contents. MC carbides were partly dissolved into the matrix during the solid solution treatment, and the morphology and size of carbides were influenced by the solid solution treatment temperature. Characteristics of gamma prime precipitates were also significantly affected by the solid solution treatment conditions. Single or duplex size distributions of gamma prime precipitates were obtained depending on the solid solution treatment condition. Higher tensile strength was obtained in the case of finer precipitation size and in the case of single size distribution as compared with that of duplex size distribution.


2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.


2014 ◽  
Vol 988 ◽  
pp. 145-150
Author(s):  
Jian Chen ◽  
Ming Zhang ◽  
Dong Yang ◽  
Huan Liang

CuNiCoBe alloy and CuCoBe alloy were cast by the vacuum inductive melting technique, and were heat treated under certain parameters. By using optical microscope, sclerometer and conductivity meter, the properties of two alloys were investigated after heat treatment. Experimental results show that the process of 980 °C for solid solution and three hours of aging at 450 °C is the best heat treatment for CuCoBe alloy, while 960 °C is the best solid solution treatment temperature for CuNiCoBe alloy with the same aging measures. Ni is beneficial to improve the hardness and conductivity of alloys, and CuNiCoBe alloy has better strength, hardness and conductivity than CuCoBe alloy at different temperatures, and two alloys all have a conductivity mutation increase near 450 °C. CuNiCoBe alloy and CuCoBe alloy soften respectively at 464 °C and 471 °C.


2011 ◽  
Vol 686 ◽  
pp. 253-259
Author(s):  
Xu Ning ◽  
Wei Dong Xie ◽  
Chun Mei Dang ◽  
Xiao Dong Peng ◽  
Yan Yang ◽  
...  

A series of Mg-6Al-2Sr-1.5Y-xNd (x=0, 0.3, 0.6, 0.9, 1.2) alloy samples were prepared and their microstructures were observed and mechanical properties were measured. The existing forms of Y and Nd were studied. The effects of Y and Nd on microstructure and mechanical properties of AJ62 alloy were investigated. The results show that the main existing forms of Y and Nd in AJ62 alloy are Al2Y and Al2Nd. The combined addition of rare earth Y and Nd can refine α-Mg matrix obviously and reduce the amount of the β-Mg17Al12phases; after solid solution treatment, the tensile strength of the alloys rise first and fall later with increasing content of Nd. When the content of Nd is about 0.6%wt, the values of tensile strengthes are up to the maximum both at room temperature and at 448 K.


In this work, ZA-27 alloy was fabricated and solid solution treatment at 120, 240 and 360 °C for 1 hr., microstructure and physical properties of alloy were studied by X-ray diffraction, scanning electron microscopy. Results observed that the microstructure of ZA-27 alloy manufactured (as-cast) was composed of α, β, η and ε phases, then decomposed to β phase at 360 oC. The heat treatment of ZA-27 alloys influenced on microstructure, decreasing of strength and hardness, but also causes increasing of elongation. The wear rates of changes increase with increasing solid solution treatment


2015 ◽  
Vol 816 ◽  
pp. 446-450
Author(s):  
Xiao Bing Zheng ◽  
Wen Bo Du ◽  
Ke Liu ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The microstructure evolution of the Mg-3Zn-0.5Er-0.5Al (mass fraction, %) alloy under the different condition was investigated. The results showed that as-cast Mg-3Zn-0.5Er-0.5Al alloy mainly consisted of primary large irregular Mg4Zn7 phase and needlelike (Mg, Zn, Er, Al) quaternary phase. Mg4Zn7 phase almost dissolved into the matrix after solid solution treatment at 400 oC for 10 h, while the (Mg, Zn, Er, Al) quaternary phase still existed. The solution treated alloy was extruded at 250 °C. The ultimate tensile strength of the as-extruded alloy was approximately 268 MPa and the YTS was approximately 163 MPa companying with an elongation of 28%. The tensile strength of the as-extruded alloy improved obviously, which was mainly attributed to the grain refinement.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 478
Author(s):  
Zheyu He ◽  
Hao He ◽  
Jia Lou ◽  
Yimin Li ◽  
Dongyang Li ◽  
...  

Ti6Al4V alloy has been considered as a key component used in ultrasonic scalpels. In this series of papers, the fabrication, structure, and mechanical and ultrasonic properties of medical Ti6Al4V alloys suitable for ultrasonic scalpel are studied systemically. These alloys with low elastic modulus and present a typical bimodal microstructure with relatively high β phase content (~40%) and lamellar α thickness of ≤ 0.9 µm. In the first paper, the relationship between the microstructure and mechanical properties of hot-rolled Ti6Al4V alloys treated by heating treatment is discussed. In the second paper, the dependence of the ultrasonic properties on the microstructure of the heat-treated Ti6Al4V alloys is reported. With increasing solid solution temperature, the content and size of the primary α phase decrease. In contrast, the content and size of the lamellar α phase increase. Additionally, the β phase content first increases and then decreases. The microstructure of Ti6Al4V alloys could be slightly changed by aging treatment. When the solid solution treatment temperature increases to 980 °C from 960 °C, the average size of the lamellar α phase in the alloys increases by 1.1 µm. This results in a decrease in the average yield strength (93 MPa). The elastic modulus of alloys is mainly controlled by the β phase content. The microstructure of alloys by solution-treatment at 960 °C shows the highest β phase content and lowest average elastic modulus of 99.69 GPa, resulting in the minimum resonant frequency (55.06 kHz) and the highest average amplitude (21.48 µm) of the alloys at the length of 41.25 mm.


Sign in / Sign up

Export Citation Format

Share Document