scholarly journals Zein-layered hydroxide biohybrids: strategies of synthesis and characterization

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 825
Author(s):  
Alcântara ◽  
Darder ◽  
Aranda ◽  
Ruiz-Hitzky

This work constitutes a basic study about the first exploration on the preparation of biohybrids based on the corn protein zein and layered metal hydroxides, such as layered double hydroxides (LDH) and layered single hydroxides (LSHs). For this purpose, MgAl layered double hydroxide and the Co2(OH)3 layered single hydroxide were selected as hosts, and various synthetic approaches were explored to achieve the formation of the zein-layered hydroxide biohybrids, profiting from the presence of negatively charged groups in zein in basic medium. Zein-based layered hydroxide biohybrids were characterized by diverse physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/differential thermal analysis (TG/DTA), solid state 13C cross-polarization magical angle spinning nuclear magnetic resonance (CP-MAS NMR), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), etc., which suggest that the different synthesis procedures employed and the anion located in the interlayer region of the inorganic host material seem to have a strong influence on the final features of the biohybrids, resulting in mixed, single intercalated, or highly exfoliated intercalated phases. Thus, the resulting biohybrids based on zein and layered hydroxides could have interest in applications in biomedicine, biosensing, materials for electronic devices, catalysis, and photocatalysis.

2018 ◽  
Vol 11 (01) ◽  
pp. 1850014 ◽  
Author(s):  
Songnan Li ◽  
Jiawei Zhang ◽  
Saba Jamil ◽  
Qinghai Cai ◽  
Shuying Zang

In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160[Formula: see text]m2/g and 0.65[Formula: see text]m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258[Formula: see text]mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daire Tyndall ◽  
Sonia Jaskaniec ◽  
Brian Shortall ◽  
Ahin Roy ◽  
Lee Gannon ◽  
...  

AbstractNickel–iron-layered double hydroxide (NiFe LDH) platelets with high morphological regularity and submicrometre lateral dimensions were synthesized using a homogeneous precipitation technique for highly efficient catalysis of the oxygen evolution reaction (OER). Considering edge sites are the point of activity, efforts were made to control platelet size within the synthesized dispersions. The goal is to controllably isolate and characterize size-reduced NiFe LDH particles. Synthetic approaches for size control of NiFe LDH platelets have not been transferable based on published work with other LDH materials and for that reason, we instead use postsynthetic treatment techniques to improve edge-site density. In the end, size-reduced NiFe LDH/single-wall carbon nanotube (SWCNT) composites allowed to further reduce the OER overpotential to 237 ± 7 mV (<L> = 0.16 ± 0.01 μm, 20 wt% SWCNT), which is one of the best values reported to date. This approach as well improved the long-term activity of the catalyst in operating conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xianlu Cui ◽  
Yaogang Li ◽  
Qinghong Zhang ◽  
Hongzhi Wang

Flaky layered double hydroxide (FLDH) was prepared by the reconstruction of its oxide in alkali solution. The composites with FLDH/Ag3PO4mass ratios at 1.6 : 1 and 3 : 1 were fabricated by the coprecipitation method. The powders were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope, and UV-vis diffuse reflectance spectroscopy. The results indicated that the well-distributed Ag3PO4in a fine crystallite size was formed on the surface of FLDH. The photocatalytic activities of the Ag3PO4immobilized on FLDH were significantly enhanced for the degradation of acid red G under visible light irradiation compared to bare Ag3PO4. The composite with the FLDH/Ag3PO4mass ratio of 3 : 1 showed a higher photocatalytic efficiency.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cha Ping Liau ◽  
Mansor Bin Ahmad ◽  
Kamyar Shameli ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim ◽  
...  

Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.


2018 ◽  
Vol 8 (11) ◽  
pp. 2099 ◽  
Author(s):  
Osama Saber ◽  
Abdullah Aljaafari ◽  
Sarah Asiri ◽  
Khalid Batoo

The present study has a dual aim of supporting magnetic nanoparticles over the nanolayers of LDHs and designing two-dimensional magnetic nano-nets of cobalt ferrite. In this trend, nanoparticles of CoFe2O4 were prepared and supported by Co-Fe LDH through urea hydrolysis. The nanolayered structures of Co-Fe LDH were confirmed by X-ray diffraction, energy-dispersive X-ray spectrometry, FT-IR spectra, thermal analyses, and transmission electron microscopy. In addition, they indicated that 13.2% CoFe2O4 were supported over Co-Fe LDH. Transformation of the nanolayered structures of Co-Fe LDH to nano-nets was achieved by the catalytic effect of the supported CoFe2O4 nanoparticles through solvent thermal technique. X-ray diffraction patterns and transmission electron microscopy images confirmed the transformation of the supported Co-Fe LDH to nano-nets of cobalt ferrite. In order to indicate the effect of the LDH for designing the nano-nets, nanoparticles of cobalt ferrite were prepared by the same technique without LDH. The magnetic behavior of the nano-nets and the supported Co-Fe LDH were measured and compared with the nanoparticles through vibrating sample magnetometer technique. The magnetic parameters indicated that the prepared nano-nets have ferromagnetic behavior and high coercivity. However, the prepared nanoparticles revealed a superparamagnetic state and low coercivity. The experimental results concluded that the incorporation of nanoparticles with nanowires into nano-net structures has been found to be an efficient way to improve their magnetic properties and prevent their agglomerations. Finally, layered double hydroxides are an important source for constructing magnetic nanolayered structures and nano-nets.


2012 ◽  
Vol 1372 ◽  
Author(s):  
César A. C. Soto ◽  
Aurora P. Delgado ◽  
Esthela R. Ramírez ◽  
Veridiana R. Zamudio

ABSTRACTAluminum lithium hydroxide carbonate hydrate, also known as Al-Li double hydroxide or Al-Li hydrotalcite-like compound [Al2Li(OH)6]2CO3•nH2O, was prepared from basic aluminum sulfate. This compound was prepared by precipitation in homogeneous solution of an aluminum bisulfite solution. A sodium aluminate aqueous solution was prepared by dissolving basic aluminum sulfate in 1M sodium hydroxide. The Al-Li double hydroxide was obtained after addition of lithium carbonate satured solution to the sodium aluminate solution, at 60 °C. The synthesized powder was characterized by thermal analysis (TG, DTG and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By this method crystalline Li-Al hydrotalcite like compound with composition near to Al4Li2(OH)12CO3 •3H2O was obtained.


2016 ◽  
Vol 36 (7) ◽  
pp. 681-693 ◽  
Author(s):  
Hadja Benaddi ◽  
Djafer Benachour ◽  
Yves Grohens

Abstract Polymer/mineral filler nanocomposites are more and more used for diverse applications. As mineral fillers, layered double hydroxides (LDHs) present a great advantage as flame retardants from an environmental point a view (reduction of smoke and toxic gases). This article deals with the use of LDH as flame retardants as compared to montmorillonite (MMT). In situ bulk polymerization of styrene was carried out in the presence of MgAl LDH modified with dodecyl sulfate (DDS) and dodecylbenzene sulfonate (DBS) surfactants. LDH concentrations used were lower than 10 wt.%. X-ray diffraction analysis of the LDH-styrene suspensions revealed the monomer intercalation into the DDS-LDH galleries and a slight decrease in the DBS-LDH basal spacing. Transmission electron microscopy analysis showed that the polymerization occurred outside the DBS-LDH galleries, leading to exfoliation of the layers on the outer surface of LDH platelets. DDS-LDH particles were trapped in the PS polymer. The thermal stability effect was observed for all LDH nanocomposites by thermogravimetric analysis. Cone calorimetry measurements revealed that only the DBS-LDH nanofiller resulted in a reduction of the peak heat released rate (PHHR) and a decrease of smoke released. DBS-LDH/PS exhibited fire properties close to those of clay-PS nanocomposite at 7 wt.% montmorillonite. The PHRR reduction remained small and the total heat release rate constant at 7 wt.% DBS-LDH loading.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Zhao ◽  
Fenfei Xiao ◽  
Qingze Jiao

Ni/Al layered double hydroxide (LDH) nanorods were successfully synthesized by the hydrothermal reaction. The crystal structure of the products was characterized by X-ray diffraction (XRD). The morphology of the products was observed using transmission electron microscopy (TEM) and field emission scanning electron microscopy (SEM). The influences of reaction time and pH value on the morphology of the Ni/Al LDHs were investigated. The result showed that the well-crystallized nanorods of Ni/Al LDHs could be obtained when the pH value was about 10.0 with a long reaction time (12–18 h) at 180°C.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2181
Author(s):  
Jie-Mao Wang ◽  
Hao Wang ◽  
Erh-Chiang Chen ◽  
Yun-Ju Chen ◽  
Tzong-Ming Wu

In this research, the effects of Zn-Ti layered double hydroxide (Zn-Ti LDH) as a UV-protection additive, which was added to the poly(butylene succinate-co-adipate) (PBSA) matrix, were investigated. Stearic acid was used to increase the hydrophobicity of Zn-Ti LDH via ion-exchange method. Transmission electron microscopy images of PBSA composites showed that modified Zn-Ti LDH (m-LDH) well-dispersed in the polymer matrix. Due to the effect of heterogeneous nucleation, the crystallization temperature of the composite increased to 52.9 °C, and the accompanying crystallinity increased to 31.0% with the addition of 1 wt% m-LDH. The additional m-LDH into PBSA copolymer matrix significantly enhanced the storage modulus, as compared to pure PBSA. Gel permeation chromatography and Fourier transform infrared spectroscopy analysis confirmed that the addition of m-LDH can reduce the photodegradation of PBSA.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3051
Author(s):  
Somia Djelloul Bencherif ◽  
Juan Jesús Gallardo ◽  
Iván Carrillo-Berdugo ◽  
Abdellah Bahmani ◽  
Javier Navas

The development of new materials for performing photocatalytic processes to remove contaminants is an interesting and important research line due to the ever-increasing number of contaminants on our planet. In this sense, we developed a layered double hydroxide material based on Zn and Cr, which was transformed into the corresponding oxide by heat treatment at 500 °C. Both materials were widely characterized for their elemental composition, and structural, morphological, optical and textural properties using several experimental techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, UV-vis spectroscopy and physisorption techniques. In addition, the photocatalytic activity of both materials was analysed. The calcined one showed interesting photocatalytic activity in photodegradation tests using crystal violet dye. The operational parameters for the photocatalytic process using the calcined material were optimised, considering the pH, the initial concentration of the dye, the catalyst load, and the regeneration of the catalyst. The catalyst showed good photocatalytic activity, reaching a degradation of 100% in the optimised conditions and showing good performance after five photodegradation cycles.


Sign in / Sign up

Export Citation Format

Share Document