scholarly journals Study on Recycling of Steel Slags Used as Coarse and Fine Aggregates in Induction Healing Asphalt Concretes

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 889 ◽  
Author(s):  
Haiqin Xu ◽  
Shaopeng Wu ◽  
Hechuan Li ◽  
Yuechao Zhao ◽  
Yang Lv

Steel slag, a by-product of steelmaking, imposes lots of negative impacts on the environment. For alleviating negative impacts, more and more experiments have been carried out to explore the application possibility of steel slag. The purpose of this study is to explore the feasibility of steel slag being applied in induction healing asphalt concretes to replace coarse and fine aggregate. Surface texture and pore sizes of steel slag were firstly tested, and then steel slag and basalt asphalt mixtures modified with steel fibers were prepared. Moisture susceptibility, dynamic stability, mechanical property, thermal property, induction heating speed, natural cooling speed and healing property of the asphalt mixtures were evaluated. Results showed that steel slags had more obvious holes in the surface while the surface area is much larger than that of basalt. Furthermore, steel fibers and steel slag both have dynamic stability, and steel fibers contribute to increased moisture resistance while steel slag is not. Steel slag asphalt concrete showed better mechanical property and better capacity to store heating. Steel slag asphalt mixtures had a similar heating speed to basalt asphalt mixtures but a significantly slower cooling rate. Finally, the induction healing test and CT scanning test demonstrated that steel slag asphalt mixtures had a similar healing ability to basalt asphalt mixtures. It can be concluded that steel slags have the potential to replace the natural aggregates to be applied in induction heating self-healing asphalt concretes.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1392 ◽  
Author(s):  
Jiuming Wan ◽  
Yue Xiao ◽  
Wei Song ◽  
Cheng Chen ◽  
Pan Pan ◽  
...  

Ultra-thin wearing course (UTWC) has been developed in pavement preventive maintenance for many years. However, how to prolong the service life of UTWC still requires further research. This study introduced AC-5 and SMA-5 asphalt mixtures, which can be induction heated. Steel fiber and steel slag were used in the mixtures as additives. Marshall Stability and induction heating property of mixtures were characterized. In addition, self-healing property of UTWC materials had been emphatically conducted. Adding steel fiber in mixtures led to higher Marshall Stability and lower flow value, while steel slag generally showed a negative effect. Induction heating property showed a positive relationship with the additives. Induction heating time was positively correlated to the healing ratio of the mixtures. Induction heating on the mixtures could recover the strength of mixtures to a certain degree. Mixtures with more steel fiber showed a higher healing ratio. Basalt-steel slag based mixtures showed better healing ratios than the basalt based mixtures. The healing ratios of mixtures illustrated a decreasing tendency as the healing cycle increased.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 663 ◽  
Author(s):  
Baowen Lou ◽  
Zhuangzhuang Liu ◽  
Aimin Sha ◽  
Meng Jia ◽  
Yupeng Li

Excessive usage of non-renewable natural resources and massive construction wastes put pressure on the environment. Steel slags, the main waste material from the metal industry, are normally added in asphalt concrete to replace traditional aggregate. In addition, as a typical microwave absorber, steel slag has the potential to transfer microwave energy into heat, thus increasing the limited self-healing ability of asphalt mixture. This paper aims to investigate the microwave absorption potentials of steel slag and the effect of its addition on road performance. The magnetic parameters obtained from a microwave vector network analyzer were used to estimate the potential use of steel slag as microwave absorber to heal cracks. Meanwhile, the initial self-healing temperature was further discussed according to the frequency sweeping results. The obvious porous structure of steel slag observed using scanning electron microscopy (SEM) had important impacts on the road performance of asphalt mixtures. Steel slag presented a worse effect on low-temperature crack resistance and water stability, while high-temperature stability can be remarkably enhanced when the substitution of steel slag was 60% by volume with the particle size of 4.75–9.5 mm. Overall, the sustainability of asphalt mixtures incorporating steel slag can be promoted due to its excellent mechanical and microwave absorption properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hechuan Li ◽  
Jianying Yu ◽  
Quantao Liu ◽  
Yuanyuan Li ◽  
Yaqi Wu ◽  
...  

It is consensual that the self-healing property of asphalt concrete can repair the damage inside it during high temperature and rest period. In order to not affect the traffic, the rest period of asphalt pavement is very short and uncontrollable; so, it is necessary to obtain enough high temperature in a limited time to achieve higher healing efficiency of asphalt concrete. The purpose of this paper is to study the induction heating efficiency and healing behaviors of asphalt concretes doped with different conductive additives. Steel fiber, steel grit, and steel slag were added to asphalt mixtures as conductive additives to prepare induction healing asphalt concretes. The steel grit and steel slag were added to replace the aggregates of corresponding particle size by equal volume to ensure the consistency of asphalt concrete volume, which can avoid degrading the performance of asphalt concrete due to the change of porosity. The induction heating efficiency and healing rate of asphalt concrete were quantified by infrared camera and three-point bending-healing experiment, respectively. The results showed that the thermal properties of asphalt concrete changed with the addition of different conductive additives. The asphalt concrete with steel fiber had the best induction heating property. While steel slag had extremely weak induction heating speed, the better thermal insulation property of the asphalt concrete with steel slag resulted in a higher induction healing rate. It was suggested to add steel slag to induction healing asphalt concrete to improve the healing rate.


2018 ◽  
Vol 129 ◽  
pp. 871-883 ◽  
Author(s):  
Yihan Sun ◽  
Shaopeng Wu ◽  
Quantao Liu ◽  
Jianfu Hu ◽  
Yuan Yuan ◽  
...  

2017 ◽  
Vol 7 (10) ◽  
pp. 1088 ◽  
Author(s):  
Quantao Liu ◽  
Bin Li ◽  
Erik Schlangen ◽  
Yihan Sun ◽  
Shaopeng Wu

2014 ◽  
Vol 599 ◽  
pp. 193-197 ◽  
Author(s):  
Yi Han Sun ◽  
Quan Tao Liu ◽  
Shao Peng Wu ◽  
Fei Shang

In this research, the potential of using steel slag asphalt mixture as a self-healing material was investigated by means of microwave heating. The microwave heating rate and thermal conductivity of asphalt mixtures were tested respectively. The result shown that, the heating rate of steel slag asphalt mixtures is approximately two times faster than limestone asphalt mixtures. While its thermal conductivity is slightly lower. It is concluded that microwave heating can be used to promote self-healing of steel slag asphalt mixture.


Author(s):  
Jiuming Wan ◽  
Shaopeng Wu ◽  
Xiaodi Hu ◽  
Yuanyuan Li ◽  
Pan Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document