scholarly journals Experimental Studies of Microchannel Tapering on Droplet Forming Acceleration in Liquid Paraffin/Ethanol Coaxial Flows

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 944
Author(s):  
Jinsong Zhang ◽  
Chao Wang ◽  
Xianfeng Liu ◽  
Chunming Yi ◽  
Z. L. Wang

The formations of micro-droplets are strongly influenced by the local geometries where they are generated. In this paper, through experimental research, we focus on the roles of microchannel tapering in the liquid paraffin/ethanol coaxial flows in their flow patterns, flow regimes, and droplet parameters, i.e., their sizes and forming frequencies. For validity, the non-tapering coaxial flows (the convergence angle α = 0 ∘ ) are investigated, the experimental methods and experimental data are examined and analyzed by contrasting the details with previous works, and consistent results are obtained. We consider a slightly tapering microchannel (the convergence angle α = 2.8 ∘ ) and by comparison, the experiments show that the tapering has significant effects on the flow patterns, droplet generation frequencies, and droplet sizes. The regimes of squeezing, dripping, jetting, tubing, and threading are differentiated to shrink toward the coordinate origin of the C a c – W e d space. The closer it is to the origin, the less variations will occur. For the adjacent regimes of the origin, i.e., dripping and squeezing, slight changes have occurred in both flow patterns, as well as the droplet characters. In the dripping and squeezing modes, the liquid droplets are generated near the orifice of the inner tube. Their forming positions (geometry) and flow conditions are almost the same. Therefore, the causes of minute changes in such regimes are physically understandable. While in the jetting regimes, the droplets shrink in size and their forming frequencies increase. The droplet sizes and the frequencies are both linearly related to those of the non-tapering cases with the corresponding relations derived. Furthermore, the threading and the tubing patterns almost did not emerged in the non-tapering data, as it seemed easier to form elongated jets, thinning or widening, in the tapered tubes. This can be explained by the stable analysis of the coaxial jets, which indicates that the reductions in the microchannel diameters can suppress the development of the interface disturbances.

2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


2019 ◽  
Vol 108 (1) ◽  
pp. 11-17
Author(s):  
Mert Şekerci ◽  
Hasan Özdoğan ◽  
Abdullah Kaplan

Abstract One of the methods used to treat different cancer diseases is the employment of therapeutic radioisotopes. Therefore, many clinical, theoretical and experimental studies are being carried out on those radioisotopes. In this study, the effects of level density models and gamma ray strength functions on the theoretical production cross-section calculations for the therapeutic radioisotopes 90Y, 153Sm, 169Er, 177Lu and 186Re in the (n,γ) route have been investigated. TALYS 1.9 code has been used by employing different level density models and gamma ray strength functions. The theoretically obtained data were compared with the experimental data taken from the literature. The results are presented graphically for better interpretation.


1981 ◽  
Vol 21 (06) ◽  
pp. 747-762 ◽  
Author(s):  
Karl E. Bennett ◽  
Craig H.K. Phelps ◽  
H. Ted Davis ◽  
L.E. Scriven

Abstract The phase behavior of microemulsions of brine, hydrocarbon, alcohol, and a pure alkyl aryl sulfonate-sodium 4-(1-heptylnonyl) benzenesulfonate (SHBS or Texas 1) was investigated as a function of the concentration of salt (NaCl, MgCl2, or CaCl2), the hydrocarbon (n-alkanes, octane to hexadecane), the alcohol (butyl and amyl isomers), the concentration of surfactant, and temperature. The phase behavior mimics that of similar systems with the commercial surfactant Witco TRS 10–80. The phase volumes follow published trends, though with exceptions.A mathematical framework is presented for modeling phase behavior in a manner consistent with the thermodynamically required critical tie lines and plait point progressions from the critical endpoints. Hand's scheme for modeling binodals and Pope and Nelson's approach to modeling the evolution of the surfactant-rich third phase are extended to satisfy these requirements.An examination of model-generated progressions of ternary phase diagrams enhances understanding of the experimental data and reveals correlations of relative phase volumes (volume uptakes) with location of the mixing point (overall composition) relative to the height of the three-phase region and the locations of the critical tie lines (critical endpoints and conjugate phases). The correlations account, on thermodynamic grounds, for cases in which the surfactant is present in more than one phase or the phase volumes change discontinuously, both cases being observed in the experimental study. Introduction The phase behavior of a surfactant-based micellar formulation is one of the major factors governing the displacement efficiency of any chemical flooding process employing that formulation. Knowledge of phase behavior is, thus, important for the interpretation of laboratory core floods, the design of flooding processes, and the evaluation of field tests. Phase behavior is connected intimately with other determinants of the flooding process, such as interfacial tension and viscosity. Since the number of equilibrium phases and their volumes and appearances are easier to measure and observe than phase compositions, viscosities, and interfacial tensions, there is great interest in understanding the phase-volume/phase-property relationships. Commercial surfactants, such as Witco TRS 10-80, are sulfonates of crude or partially refined oil. While they seem to be the most economically practicable surfactants for micellar flooding, their behavior, particularly with crude oils and reservoir brines, can be difficult to interpret, the phases varying with time and from batch to batch. Phase behavior studies with a small number of components, in conjunction with a theoretical understanding of phase behavior progressions, can aid in understanding more complex behavior. In particular, one can begin to appreciate which seemingly abnormal experimental observations (e.g., surfactant present in more than one phase or a discontinuity in phase volume trends) are merely features of certain regions of any phase diagram and which are peculiar to the specific crude oil or commercial surfactant used in the study.We report here experimental studies of the phase behavior of microemulsions of a pure sulfonate surfactant (Texas 1), a single normal alkane hydrocarbon, a simple brine, and a small amount of a suitable alcohol as cosurfactant or cosolvent. The controlled variables are hydrocarbon chain length, alcohol, salinity, salt type (NaCl, MgCl2, or CaCl2), surfactant purity, surfactant concentration, and temperature. Many of these experimental data were presented earlier. SPEJ P. 747^


Author(s):  
Patrick J. Migliorini ◽  
Alexandrina Untaroiu ◽  
William C. Witt ◽  
Neal R. Morgan ◽  
Houston G. Wood

Annular seals are used in turbomachinery to reduce secondary flow between regions of high and low pressure. In a vibrating rotor system, the non-axisymmetric pressure field developed in the small clearance between the rotor and the seal generate reactionary forces that can affect the stability of the entire rotor system. Traditionally, two analyses have been used to study the fluid flow in seals, bulk-flow analysis and computational fluid dynamics (CFD). Bulk-flow methods are computational inexpensive, but solve simplified equations that rely on empirically derived coefficients and are moderately accurate. CFD analyses generally provide more accurate results than bulk-flow codes, but solution time can vary between days and weeks. For gas damper seals, these analyses have been developed with the assumption that the flow can be treated as isothermal. Some experimental studies show that the difference between the inlet and outlet temperature temperatures is less than 5% but initial CFD studies show that there can be a significant temperature change which can have an effect on the density field. Thus, a comprehensive analysis requires the solution of an energy equation. Recently, a new hybrid method that employs a CFD analysis for the base state, unperturbed flow and a bulk-flow analysis for the first order, perturbed flow has been developed. This method has shown to compare well with full CFD analysis and experimental data while being computationally efficient. In this study, the previously developed hybrid method is extended to include the effects of non-isothermal flow. The hybrid method with energy equation is then compared with the isothermal hybrid method and experimental data for several test cases of hole-pattern seals and the importance of the use of energy equation is studied.


1984 ◽  
Vol 146 ◽  
pp. 331-345 ◽  
Author(s):  
I. G. Bromilow ◽  
R. R. Clements

Flow visualization has shown that the interaction of line vortices is a combination of tearing, elongation and rotation, the extent of each depending upon the flow conditions. A discrete-vortex model is used to study the interaction of two and three growing line vortices of different strengths and to assess the suitability of the method for such simulation.Many of the features observed in experimental studies of shear layers are reproduced. The controlled study shows the importance and rapidity of the tearing process under certain conditions.


Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


Author(s):  
Timothy Gupton ◽  
Tania Leal Méndez

AbstractThe current article examines two experimental investigations of the syntaxdiscourse interface, which address theoretical questions in different ways: the first is an L1 investigation of Galician speakers in Gupton (2010) and the second is a dual investigation of L1 and L2 Spanish reported on in Leal Méndez & Slabakova (2011). These investigations gathered quantitative data via psycholinguistic tasks with accompanying audio utilizing the WebSurveyor platform. They involved counterbalanced designs and were followed by statistical analysis. While acknowledging that experimental data does not have primacy over intuitive data, the authors endorse the use of experimental methods of data elicitation (such as the ones already used in generative SLA research) in theoretical syntax in order to avoid experimenter bias and to get a more complete picture of native speaker intuition and competencies.


2001 ◽  
Vol 68 (6) ◽  
pp. 937-943 ◽  
Author(s):  
K. Bearden ◽  
J. W. Dally ◽  
R. J. Sanford

Since the pioneering discussion by Irwin, a significant effort has been devoted to determining stress intensity factors (K) using experimental methods. Techniques have been developed to determine stress intensity factors from photoelastic, strain gage, caustics, and moire´ data. All of these methods apply to a relatively long single-ended-edge crack. To date, the determination of K for internal cracks that are double-ended by experimental methods has not been addressed. This paper describes a photoelastic study of tension panels with both central and eccentric internal cracks. The data recorded in the experiments was analyzed using a new series solution for the opening-mode stress intensity factor for an internal crack. The data was also analyzed using the edge-crack series solution, which is currently employed in experimental studies. Results indicated that the experimental methods usually provided results accurate to within three to five percent if the series solution for the internal crack was employed in an overdeterministic numerical analysis of the data. Comparison of experimental results using the new series for the internal crack and the series for an edge crack showed the superiority of the new series.


2021 ◽  
Author(s):  
Ronald E. Vieira ◽  
Bohan Xu ◽  
Asad Nadeem ◽  
Ahmed Nadeem ◽  
Siamack A. Shirazi

Abstract Solids production from oil and gas wells can cause excessive damage resulting in safety hazards and expensive repairs. To prevent the problems associated with sand influx, ultrasonic devices can be used to provide a warning when sand is being produced in pipelines. One of the most used methods for sand detection is utilizing commercially available acoustic sand monitors that clamp to the outside of pipe wall and measures the acoustic energy generated by sand grain impacts on the inner side of a pipe wall. Although the transducer used by acoustic monitors is especially sensitive to acoustic emissions due to particle impact, it also reacts to flow induced noise as well (background noise). The acoustic monitor output does not exceed the background noise level until a sufficient sand rate is entrained in the flow that causes a signal output that is higher than the background noise level. This sand rate is referred to as the threshold sand rate or TSR. A significant amount of data has been compiled over the years for TSR at the Tulsa University Sand Management Projects (TUSMP) for various flow conditions with stainless steel pipe material. However, to use this data to develop a model for different flow patterns, fluid properties, pipe, and sand sizes is challenging. The purpose of this work is to develop an artificial intelligence (AI) methodology using machine learning (ML) models to determine TSR for a broad range of operating conditions. More than 250 cases from previous literature as well as ongoing research have been used to train and test the ML models. The data utilized in this work has been generated mostly in a large-scale multiphase flow loop for sand sizes ranging from 25 to 300 μm varying sand concentrations and pipe diameters from 25.4 mm to 101.6 mm ID in vertical and horizontal directions downstream of elbows. The ML algorithms including elastic net, random forest, support vector machine and gradient boosting, are optimized using nested cross-validation and the model performance is evaluated by R-squared score. The machine learning models were used to predict TSR for various velocity combinations under different flow patterns with sand. The sensitivity to changes of input parameters on predicted TSR was also investigated. The method for TSR prediction based on ML algorithms trained on lab data is also validated on actual field conditions available in the literature. The AI method results reveal a good training performance and prediction for a variety of flow conditions and pipe sizes not tested before. This work provides a framework describing a novel methodology with an expanded database to utilize Artificial Intelligence to correlate the TSR with the most common production input parameters.


Author(s):  
A. Semenov ◽  
T. Sakhno ◽  
Y. Sakhno

Purpose: The article aims to study the photobiological safety of ultraviolet radiation of UV lamps in agriculture. Design/methodology/approach: The research and analysis of the lighting characteristics of samples of LUF 80 and LE 30 lamps, which are the most widely used in the agrarian complex. Findings: Experimental studies have shown that the photobiological safety of LUF 80 lamps belongs to the low-risk group RG1, while LE 30 lamps show high risk and are thus assigned to group RG3. Research limitations/implications: It is advisable to continue studying the characteristics of lamps and lamp systems for various fields of agriculture on the market in Ukraine to assess their compliance with safety requirements. Practical implications: The application of the proposed approach allows increasing the level of labor safety in commercial greenhouses or any other industry by choosing the suitable lamps for agriculture that at present are not regulated by additional safety measures. Originality/value: The originality of the article is showing the results of the experimental data of the studies of light-technical characteristics of ultraviolet lamps for agriculture.


Sign in / Sign up

Export Citation Format

Share Document