scholarly journals Experimental and Numerical Analysis of Mixed I-214 Poplar/Pinus Sylvestris Laminated Timber Subjected to Bending Loadings

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3134
Author(s):  
Francisco J. Rescalvo ◽  
Cristian Timbolmas ◽  
Rafael Bravo ◽  
Antolino Gallego

The structural use of timber coming from fast growing and low-grade species such as poplar is one of the current challenges in the wood value chains, through the development of engineering products. In this work, a qualitative comparison of the behavior of mixed glued laminated timber made of pine in their outer layers and of poplar in their inner layers is shown and discussed. Single-species poplar and pine laminated timber have been used as control layouts. The investigation includes destructive four-point bending tests and three non-destructive methodologies: finite elements numerical model; semi-analytical model based on the Parallel Axes theorem and acoustic resonance testing. An excellent agreement between experimental and numerical results is obtained. Although few number of samples have been tested, the results indicate that the use of poplar as a low-grade species in the inner layers of the laminated timber can be a promising technology to decrease the weight of the timber maintaining the good mechanical properties of pine. Likewise, the need for the use of the shear modulus in both experimental measurements and numerical analysis is suggested, as well as the need to reformulate the vibration methodology for non-destructive grading in the case of mixed timber.

2014 ◽  
Vol 996 ◽  
pp. 256-261 ◽  
Author(s):  
Venancio Martínez-García ◽  
Martin Wenzelburger ◽  
Andreas Killinger ◽  
Giancarlo Pedrini ◽  
Rainer Gadow ◽  
...  

A new approach in hole-drilling residual stress analysis is described, applying a laser for quasi non-destructive material removal by laser ablation and measuring simultaneously the residual deformation around the hole by means of high-resolution, digital holographic interferometry. To evaluate this technology, experiments measuring well-defined in-plane stresses in curved strip specimen, on experimental bending device based on the European Standard for four-point bending tests, were carried out with the conventional hole drilling and milling technique and the laser-optical technique described.


2015 ◽  
Vol 240 ◽  
pp. 155-160
Author(s):  
Ludomir J. Jankowski ◽  
Tomasz Nowak

The paper presents the results of investigation on seven glued laminated timber (GL24h class) bending beams. Bending strength and modulus of elasticity were determined. The beams were tested for four-point bending by loading them at a constant speed deflection. The strain gauge method and photoelastic coating technique were applied for strain distributions determination in selected cross-sections of the beams. Good agreement of the measurement results was obtained with both techniques. Application of the photoelastic coating technique enabled more detailed analysis of the beams failure mode, including timber defects influence on the strain distributions.


2021 ◽  
Vol 6 (SI4) ◽  
pp. 215-222
Author(s):  
Rohana Hassan ◽  
Tengku Anita Raja Husin ◽  
Nor Jihan Abd Malek ◽  
Mohd Sapuan Salit

This paper presents the experimental bending strength of steel dowelled splice glulam timber made of 'Mengkulang' species. Bending tests were conducted under a four-point bending load. Six (6) glulam specimens with 45mm x 90mm x 1800mm were loaded. Three (3) specimens were full beams as the control and three (3) splice beams dowelled with grade 8.8; 20 mm diameter steel rod. The embedded length of the steel dowel was 60mm and glued at 2mm thickness on both sides. Results show that the bending strength of the glulam control beam performed 74.18% higher than the splice beams with an increment of 58.26% displacement. Keywords: Structural material, flexural strength, failure mode, dowelled connection eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6iSI4.3029


Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 941-948 ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The flexural Young’s modulus of western hemlock, medium-density fiberboard, and 5-plywood (made of lauan) has been determined by conducting three- and four-point bending tests with various span lengths and by flexural vibration test. The Young’s modulus was significantly influenced by the deflection measurement method. In particular, the Young’s modulus was not reliable based on the difference between the deflections at two specific points in the specimen, although this test is standardized according to ISO 3349-1975 and JIS Z2101-2009.


Author(s):  
Peter A. Gustafson ◽  
Mark Omwansa ◽  
Andrew G. Geeslin ◽  
Vani J. Sabesan

Finite element models are used for qualitative comparison of the risk of fracture associated with clavicle tunnels in reconstruction of the coracoclavicular ligaments for treatment of high-grade acromioclavicular joint (ACJ) injury. The two-tunnel reconstruction technique is found likely to have higher fracture risk than the less anatomic single tunnel reconstruction. The models suggest that four point bending is more likely than three point bending, cantilever bending, or axial loading to differentiate the reconstruction techniques in a laboratory experiment. The results must be narrowly interpreted only in a laboratory context due to the limitations of the study.


2006 ◽  
Vol 309-311 ◽  
pp. 1191-1194
Author(s):  
Shuichi Wakayama ◽  
Teppei Kawakami ◽  
Junji Ikeda

Microfracture process during bending tests of alumina ceramics used for artificial joints was evaluated by acoustic emission (AE) technique. Four-point bending tests were carried out in air, refined water, physiological saline and simulated body fluid. AE behavior during bending test inhibited the rapid increasing point of AE events and energy prior to the final unstable fracture. It was understood that the bending stress at the increasing point corresponds to the critical stress for maincrack formation. The critical stress was affected by water in environments more strongly than fracture strength. Consequently, it was suggested that the characterization of maincrack formation is essential for the long-term reliability assessment of load-bearing bioceramics.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1670
Author(s):  
Thaworn Onpraphai ◽  
Attachai Jintrawet ◽  
Bounthanh Keoboualapha ◽  
Suprapat Khuenjai ◽  
Ruijia Guo ◽  
...  

The demands to improve the livelihood of small farmers require a systemic shift from fossil fuel-based and destructive approaches to sustainable renewable raw materials and non-destructive approaches. This should be accompanied by a fundamental reorganization of education and learning policies to create new bio-oriented value chains for biomaterials, food, wood, and energy, as well as in large parts of the health, manufacturing, and service industries. In the long run, the successful implementation of bio-oriented production depends on the systemic linking of both first- and second-hand learning in communities in rural as well as urban settings. The purpose of this paper is to present a concept for the co-design of a new curriculum to better equip new graduates with the ability to support the effort of the sustainable production of biomaterials that are non-destructive to the environment. To sustain biomaterials and enhance non-destructive ways of thinking, learning needs a community of practice in both online and onsite platforms—allowing students to better understand and support cascade use. Therefore, the use of by-products and recycling products after use will increase in importance. A community of practice, and institutions, must create education and learning platforms for improved actions regarding biomaterials across generations and experiences, which will subsequently be integrated into the circular value chains of the bioeconomy. The first- and second-hand learning to sustain these value chains depends on higher education and learning institutions with both legal mandates and systems approaches.


10.5109/12863 ◽  
2008 ◽  
Vol 53 (2) ◽  
pp. 491-495
Author(s):  
Hiroshi Tanaka ◽  
Hideki Morita ◽  
Yasuhide Murase

Sign in / Sign up

Export Citation Format

Share Document