scholarly journals Pseudo-Ductility, Morphology and Fractography Resulting from the Synergistic Effect of CaCO3 and Bentonite in HDPE Polymer Nano Composite

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3333
Author(s):  
Tauseef Ahmed ◽  
Hamdan H. Ya ◽  
Rehan Khan ◽  
Abdul Munir Hidayat Syah Lubis ◽  
Shuhaimi Mahadzir

Polymeric materials such as High density polyethylene(HDPE) are ductile in nature, having very low strength. In order to improve strength by non-treated rigid fillers, polymeric materials become extremely brittle. Therefore, this work focuses on achieving pseudo-ductility (high strength and ductility) by using a combination of rigid filler particles (CaCO3 and bentonite) instead of a single non-treated rigid filler particle. The results of all tensile-tested (D638 type i) samples signify that the microstructural features and surface properties of rigid nano fillers can render the required pseudo-ductility. The maximum value of tensile strength achieved is 120% of the virgin HDPE, and the value of elongation is retained by 100%. Furthermore, the morphological and fractographic analysis revealed that surfactants are not always going to obtain polymer–filler bonding, but the synergistic effect of filler particles can carry out sufficient bonding for stress transfer. Moreover, pseudo-ductility was achieved by a combination of rigid fillers (bentonite and CaCO3) when the content of bentonite dominated as compared to CaCO3. Thus, the achievement of pseudo-ductility by the synergistic effect of rigid particles is the significance of this study. Secondly, this combination of filler particles acted as an alternative for the application of surfactant and compatibilizer so that adverse effect on mechanical properties can be avoided.

Author(s):  
Liangliang Xia ◽  
Ming Zhou ◽  
Hongjun Tu ◽  
wen Zeng ◽  
xiaoling Yang ◽  
...  

The preparation of room-temperature self-healing polymeric materials with good healing efficiency and high mechanical strength is challenging. Two processes are essential to realise the room-temperature self-healing of materials: (a) a...


2020 ◽  
Vol 10 (20) ◽  
pp. 7303
Author(s):  
Giulia Baietti ◽  
Tommaso D’Antino ◽  
Christian Carloni

The use of composite materials to strengthen masonry structures has become common practice within the civil engineering community. Steel-reinforced grout (SRG), which comprises high-strength steel fibers embedded in a mortar matrix, is part of the family of the fiber-reinforced cementitious matrix (FRCM) composites that represent a suitable alternative to fiber-reinforced polymer (FRP) composites for strengthening existing structures. Although studies on FRCMs have already reached a certain level of maturity, some key issues remain open, such as the role of matrix type and layout, substrate properties, and test rate. This paper focuses on some of these issues. The results of single-lap direct shear tests on masonry blocks strengthened with SRGs are presented to analyze the bond behavior between the composite material and the substrate. Four aspects are considered: (1) the change in the width of the SRG mortar matrix while keeping the width of the fiber sheet fixed; (2) the type of mortar used for the SRG; (3) the influence of the test rate, and (4) the type of substrate (i.e., concrete vs. masonry). The results obtained indicate the active role of the matrix layout and the importance of the test rate, encouraging further investigations to clarify these aspects.


2014 ◽  
Vol 60 (No. 4) ◽  
pp. 165-171 ◽  
Author(s):  
P. Valášek ◽  
J. Kejval ◽  
M. Müller

Hard inorganic particles in the interaction with polymeric materials increase wear resistance. Also reactoplastics are suitable for filling with micro- and nano-particles for a purpose of some mechanical properties optimization. The paper compares chosen mechanical properties – hardness, wear resistance and tensile characteristics of epoxy resin filled with artificial corundum with various middle particles sizes and their ratio combination. Mentioned systems can be used in a sphere of the agricultural production at renovation of machine parts, they can serve for creating resistant layers on machines, floors and grillages at the same time. The aim of the carried out experiment is to compare the properties of reactoplastics filled with a primary and secondary raw material and to define an optimum ratio of the filler particle size relating to a given mechanical quality. The artificial corundum was chosen as the primary material, the waste corundum from the process of material mechanical treatment was chosen as the secondary one.    


2020 ◽  
Vol 64 (9) ◽  
pp. 610-619
Author(s):  
Jun‐ichi Maeyama ◽  
Yuko Kurata‐Iesato ◽  
Masanori Isaka ◽  
Takako Komiya ◽  
Shingou Sakurai

2020 ◽  
Vol 56 (92) ◽  
pp. 14327-14336
Author(s):  
Naoki Shida ◽  
Shinsuke Inagi

The synergistic effect of bipolar electrochemistry and electrophoresis enables facile access to various anisotropic functional materials.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Shijie Hao ◽  
Lishan Cui ◽  
Fangmin Guo ◽  
Yinong Liu ◽  
Xiaobin Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document