scholarly journals Effect of Addition of Rubber Granulate and Type of Modified Binder on the Viscoelastic Properties of Stone Mastic Asphalt Reducing Tire/Road Noise (SMA LA)

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3446
Author(s):  
Wladyslaw Gardziejczyk ◽  
Andrzej Plewa ◽  
Raman Pakholak

The use of rubber granulate in the composition of asphalt mixtures, as well as the use of poroelastic layers, is indicated by many research centers as a factor with a positive effect on tire/road noise reduction. Attention is however paid to their lower structural durability compared to asphalt concrete (AC) or stone mastic asphalt (SMA). Stone mastic asphalt reducing tire/road noise (SMA LA) layers have also been recently used as low-noise road surfaces. The article presents the test results of viscoelastic properties of asphalt mixtures SMA8 LA, SMA8 LA containing 10%, 20%, and 30% of rubber granulate, with bitumen 50/70, bitumen 50/70 modified with styrene butadiene styrene (SBS) copolymer, crumb rubber, and mixtures with bitumen modified simultaneously with crumb rubber and SBS copolymer. The reference asphalt mixture was the porous asphalt (PA8). The presented results of water damage resistance, degradation resistance in the Cantabro abrasion loss test, stiffness modulus as a function of temperature and hysteresis loop proved that the amount of rubber granulate and the type of binder significantly affect the values of these parameters. Attention was paid to the possibility of using the results of uniaxial cyclic compression tests when determining the proportion of rubber granulate in SMA8 LA mixtures. Tests of hysteresis loops and stiffness modulus confirm much higher elasticity of SMA8 LA mixtures with rubber granulate as compared to mixtures without the addition of granulate.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2884
Author(s):  
Raman Pakholak ◽  
Andrzej Plewa ◽  
Wladyslaw Gardziejczyk

Low-noise asphalt mixtures are characterized by increased air void content. Their more open structure contributes to faster degradation within the operating temperature range. For this reason, binder modification is used in their production. The correct selection of modifiers allows one to significantly improve the technical properties of the mixtures. The article presents the results of tests of six types of mixtures: stone mastic asphalt (SMA8), porous asphalt (PA8), stone mastic asphalt reducing tire/road noise (SMA8 LA) and stone mastic asphalt reducing tire/road noise, with 10%, 20% and 30% content of rubber granulate (RG). Bitumen 50/70 modified with copolymer styrene butadiene styrene (SBS) and crumb rubber (CR) was used for the production of the mixtures. In order to determine the differences in the technical properties of the mixtures, the following parameters were tested: stiffness modules by indirect tensile testing of cylindrical specimens (IT-CY) in a wide range of positive temperatures, and resistance to permanent deformation using the British and Belgian methods with the use of double wheel tracker (DWT). The test results and their analysis confirmed that there was a significant improvement in the IT-CY stiffness modules of SBS and CR modified mixtures. Replacing more than 20% of coarse aggregate with RG causes a significant decrease in the stiffness of the mixture (by 90% in relation to the reference mixture SMA8 LA). The SMA mixtures obtained lower values of rutting resistance parameters (WTS and PRD) in water (Belgian method) compared to the results obtained in the air tests (British method). On the other hand, mixtures of PA, thanks to the compression of stresses in pores filled with water, obtained better results when the rutting resistance test was performed in the water (Belgian method).


2021 ◽  
Vol 8 ◽  
Author(s):  
Huachen Liu ◽  
Yikun Chen ◽  
Yongjie Xue

In this paper, recycled cellulose diacetate (rCDA) derived from cigarette butts was used as a fiber stabilizer to develop stone mastic asphalt (SMA) mixtures. The characterizations of rCDA were investigated by scanning electron microcopy (SEM), a Fourier transform infrared spectrometer (FTIR), and a thermogravimetric analyzer (TGA). Volumetric stability, temperature stability, moisture stability, and fatigue performance of SMA mixtures with rCDA were tested to obtain the pavement performance. Results showed that rCDA appeared to have a tough surface texture with a curly and corrugated structure, which facilitated the enhancement of the cohesion bond with the asphalt binder. TG-DTG indicated that the maximum weight loss (62.48%) obtained at temperatures ranging from 294.1°C to 376.0°C was due to decomposition and degradation of organic matters. When 0.4% rCDA was used in the asphalt mixture, the dynamic stability was 4,105 cycles/mm. The ultimate flexural strength and flexural stiffness modulus were 3,722 MPa and 9.7 MPa. It indicated that the temperature stability of 0.4% rCDA was superior to 0.3% polyacrylonitrile fiber (PAN), while inferior to 0.3% polyester (PET). The value of tensile strength ratio and residual Marshall stability were 80.2 and 75.3%, respectively. The fatigue life of 0.4% rCDA was technically like that of 0.3% PAN and 0.3% PET at lower stress levels. All results concluded that the optimum content of rCDA in asphalt mixtures was 0.4% by mass of the binder.


2013 ◽  
Vol 65 (3) ◽  
Author(s):  
Norhidayah Abdul Hassan ◽  
Mohd Rosli Hainin ◽  
Haryati Yaacob ◽  
Che Ros Ismail ◽  
Nur Zurairahetty Mohd Yunus

This study presents a laboratory evaluation on the properties of crumb rubber modified asphalt mixture using a dry process method in which the fine crumb rubber is added to substitute the aggregates portion and acts as elastic aggregates within the mix. The effect of crumb rubber in the mixture was investigated in terms of the volumetric properties using Marshall Mix Design and rutting performance using Wheel Tracking Test. The crumb rubber was added between 1 to 3% in steps of 1% by weight of aggregates to modify a dense graded mix, Asphaltic Concrete (AC14) and a gap graded mix, Stone Mastic Asphalt (SMA14) according to the Malaysian mix design. Based on the result, it was observed that the performance of the asphalt mixtures was significantly affected with the addition of crumb rubber. Rubberised asphalt mixtures for AC14 were found to have a greater resistance on rutting deformation compared to the conventional mixture. However, the use of fine rubber in SMA14 mixture with 80/100 bitumen cannot provide enough binder modification to perform as good as conventional SMA14 mixture with polymer modified bitumen. Furthermore, based on detailed review, a set of procedures for producing dry mixed rubberised asphalt mixture was identified and recommended for future studies.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Nuha Salim Mashaan ◽  
Asim H. Ali ◽  
Suhana Koting ◽  
Mohamed Rehan Karim

To prevent pavement distresses there are various solutions such as adopting new mix designs or utilisation of asphalt additives. The primary aim of this study was to investigate the effect of adding crumb tyre rubber as an additive to SMA mixture performance properties. This study investigated the essential aspects of modified asphalt mixtures in order to better understand the influence of CRM modifiers on volumetric, mechanical, and stiffness properties of SMA mixture. In this study, virgin bitumen 80/100 penetration grade was used, modified with crumb rubber (CRM) at five different modification levels, namely, 6%, 12%, 16%, and 20%, respectively, by weight of the bitumen. The appropriate amount of the added CRM was found to be 12% by weight of bitumen. This percentage results in the maximum level of stability. The resilient modulus (Mr) of modified SMA samples including different percentages of CRM was obviously higher in comparison with that of unmodified samples.


2019 ◽  
Vol 11 (10) ◽  
pp. 2938 ◽  
Author(s):  
Rita Kleizienė ◽  
Ovidijus Šernas ◽  
Audrius Vaitkus ◽  
Rūta Simanavičienė

Low-noise pavements are used as an effective method of traffic noise mitigation. Low-noise pavements reduce the noise that arises due to interactions between tires and road surfaces (tire/road) via the implementation of three main components: low pavement roughness, negative pavement texture, and a high pavement air-void content. The tire/road noise reduction capabilities of the wearing layer vary depending on the aggregate type, gradation, bitumen and air-void content, and density. Consequently, the demand for an accurate tire/road noise prediction model has arisen from the design of asphalt mixtures. This paper deals with how asphalt mixture components of the wearing layer influence tire/pavement noise reduction and presents a model for tire/road noise level prediction based on the asphalt mixture composition. The paper demonstrates that the noise reduction level of low-noise asphalt pavements is dependent on the composition of the asphalt mixture. Asphalt wearing layer mixture composition parameters were tested in the laboratory from cores taken from 18 road sections, where acoustic properties were measured using a close-proximity (CPX) method. The proposed linear model is based on the bitumen amount, the air-void content of the mixture and aggregate shape and involves materials that comply with the general requirements for high-quality asphalt mixtures. The model allows for the prediction of the tire/road noise level at the asphalt mixture design stage using asphalt mixture components and volumetric properties. The proposed model is the first stage in the building of a complex model with a much wider range of low-noise asphalts components, pavement profile depth and CPX-value relationships.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Haibin Wei ◽  
Ziqi Li ◽  
Yubo Jiao

Asphalt mixture is susceptible to moisture damage under the effect of freeze-thaw (F-T) cycles. In this paper, crumb rubber (CR) was used to modify stone mastic asphalt (SMA) and the effects of diatomite and styrene butadiene styrene (SBS) on antifreezing performances of crumb rubber modified SMA (CRSMA) were investigated. Regression analysis and modified grey model (MGM) were used to construct the prediction models for properties of modified mixtures. CRSMA, CR and diatomite modified SMA (CRDSMA), and CR and SBS modified SMA (CRSSMA) were prepared in laboratory, respectively. Process of F-T cycles was designed. Air void, indirect tensile strength (ITS), and indirect tensile stiffness modulus (ITSM) were measured to evaluate the antifreezing performances of CRSMA, CRDSMA, and CRSSMA. Results indicate that air voids increase with the increasing of F-T cycles. ITS and ITSM all decrease with the increasing of F-T cycles. The addition of diatomite and SBS can reduce the air void and improve the ITS and ITSM of CRSMA. CRSSMA presents the lowest air void, highest tensile strength, and largest stiffness modulus, which reveals that CRSSMA has the best F-T resistance among three different kinds of mixtures. Moreover, MGM (1, 2) models present more favorable accuracy in prediction of air void and ITS compared with regression ones.


2021 ◽  
Vol 13 (17) ◽  
pp. 9718
Author(s):  
Amin Chegenizadeh ◽  
Pak Jing Shen ◽  
Indah Sekar Arumdani ◽  
Mochamad Arief Budihardjo ◽  
Hamid Nikraz

Bitumen is subjected to cracks and damage during its service life. Adding a material with the potential to increase the durability of bitumen can expand its service life and reduce maintenance costs. Previous studies indicate that adding crumb rubber into asphalt has a positive effect on the performance of the mixture. Using crumb rubber may solve environmental problems due to vehicle tire waste disposal by reducing maintenance costs needed to increase asphalt’s strength. Some studies have investigated the effect of bitumen mixed with crumb rubber; however, it seems that the effect of different types of rubber mixtures used has been overlooked. Therefore, this study aims to better understand the effects of the increasing amount of rubber addition in various types of asphalt mixtures and determine the optimal mixture that could be used in road construction. A series of experiment was conducted, incorporating various tests (such as Marshall stability, rutting, and fatigue), to test various mixtures of asphalt in the form of dense-graded asphalt (DGA), fine gap-graded asphalt (FGG), gap-graded asphalt (Stone Mastic Asphalt, SMA), and open-graded asphalt. The amount of added crumb rubber was 25% by weight of bitumen. All mixtures were classified as superior in rutting and fatigue resistance, since they all reached a maximum depth of rutting less than 15 mm and generated two times more failure cycles compared to the conventional asphalt. The most optimal performance asphalt mixture was showed by the SMA10 mixture, resulting in a minimum rut depth of less than 1.2 mm and producing 750% more fatigue cycles than conventional asphalt. The result indicates that the addition of 25% of the rubber particles in the binder can increase the properties and durability of asphalt mixtures.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nuha Salim Mashaan ◽  
Asim H. Ali ◽  
Suhana Koting ◽  
Mohamed Rehan Karim

Today, virgin polymer modified asphalt mixes are comparatively more expensive for road pavement. One way to reduce the expense of such construction and to make it more convenient is the application of inexpensive polymer, such as waste polymer. The primary aim of this study was to investigate the effect of adding waste tyre rubber (crumb rubber modifier (CRM)) on the stiffness and fatigue properties of stone mastic asphalt (SMA) mixtures. Various percentages of waste CRM with size of 0.60 mm were added to SMA mixtures. Indirect tensile stiffness modulus test was conducted at temperatures of 5, 25, and 40°C. Indirect tensile fatigue test was conducted at three different stress levels (2000, 2500, and 3000 N). The results show that the stiffness modulus of reinforced SMA samples containing various contents of CRM is significantly high in comparison with that of nonreinforced samples, and the stiffness modulus of reinforced samples is in fact less severely affected by the increased temperature compared to the nonreinforced samples. Further, the results show that CRM reinforced SMA mixtures exhibit significantly higher fatigue lives compared to the nonreinforced mixtures help in and promotion of sustainable technology by recycling of waste materials in much economical and environmental-friendly manner.


2020 ◽  
Vol 10 (23) ◽  
pp. 8748
Author(s):  
Chunyu Liang ◽  
Hao Zhang ◽  
Zhengwei Gu ◽  
Xin Xu ◽  
Jinxin Hao

To optimize the properties of asphalt mixtures and make full use of waste rubber tires, diatomite and crumb rubber particles were applied to reinforce the asphalt mixtures in this study. The rutting tests, the three-point bending tests, the freeze-thaw splitting tests, and the uniaxial compression creep tests were performed to analyze the effects of asphalt types and aggregate gradation on the pavement properties of diatomite and crumb rubber particles reinforced asphalt mixtures (DRPAM). Subsequently, the creep and relaxation characteristics of DRPAM were analyzed by the Burgers model, the modified Burgers model, the second-order extensive Maxwell model, and the Scott–Blair model. The results show that rubber particles and diatomite can reinforce the high temperature, low temperature, and viscoelastic properties of asphalt mixtures, although the improvement effect is weaker than styrene-butadiene-styrene (SBS). Consequently, it is concluded that rubber particle and diatomite compound modified asphalt mixture with suspension dense gradation and SBS binder will have better performance.


Sign in / Sign up

Export Citation Format

Share Document