scholarly journals Influencing Martensitic Transition in Epitaxial Ni-Mn-Ga-Co Films with Large Angle Grain Boundaries

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3674
Author(s):  
Klara Lünser ◽  
Anett Diestel ◽  
Kornelius Nielsch ◽  
Sebastian Fähler

Magnetocaloric materials based on field-induced first order transformations such as Ni-Mn-Ga-Co are promising for more environmentally friendly cooling. Due to the underlying martensitic transformation, a large hysteresis can occur, which in turn reduces the efficiency of a cooling cycle. Here, we analyse the influence of the film microstructure on the thermal hysteresis and focus especially on large angle grain boundaries. We control the microstructure and grain boundary density by depositing films with local epitaxy on different substrates: Single crystalline MgO(0 0 1), MgO(1 1 0) and Al2O3(0 0 0 1). By combining local electron backscatter diffraction (EBSD) and global texture measurements with thermomagnetic measurements, we correlate a smaller hysteresis with the presence of grain boundaries. In films with grain boundaries, the hysteresis is decreased by about 30% compared to single crystalline films. Nevertheless, a large grain boundary density leads to a broadened transition. To explain this behaviour, we discuss the influence of grain boundaries on the martensitic transformation. While grain boundaries act as nucleation sites, they also lead to different strains in the material, which gives rise to various transition temperatures inside one film. We can show that a thoughtful design of the grain boundary microstructure is an important step to optimize the hysteresis.

Author(s):  
A. Bauer ◽  
M. Vollmer ◽  
T. Niendorf

AbstractIn situ tensile tests employing digital image correlation were conducted to study the martensitic transformation of oligocrystalline Fe–Mn–Al–Ni shape memory alloys in depth. The influence of different grain orientations, i.e., near-〈001〉 and near-〈101〉, as well as the influence of different grain boundary misorientations are in focus of the present work. The results reveal that the reversibility of the martensite strongly depends on the type of martensitic evolving, i.e., twinned or detwinned. Furthermore, it is shown that grain boundaries lead to stress concentrations and, thus, to formation of unfavored martensite variants. Moreover, some martensite plates seem to penetrate the grain boundaries resulting in a high degree of irreversibility in this area. However, after a stable microstructural configuration is established in direct vicinity of the grain boundary, the transformation begins inside the neighboring grains eventually leading to a sequential transformation of all grains involved.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3215 ◽  
Author(s):  
Abbas Tamadon ◽  
Dirk J. Pons ◽  
Don Clucas ◽  
Kamil Sued

One of the difficulties with bobbin friction stir welding (BFSW) has been the visualisation of microstructure, particularly grain boundaries, and this is especially problematic for materials with fine grain structure, such as AA6082-T6 aluminium as here. Welds of this material were examined using optical microscopy (OM) and electron backscatter diffraction (EBSD). Results show that the grain structures that form depend on a complex set of factors. The motion of the pin and shoulder features transports material around the weld, which induces shear. The shear deformation around the pin is non-uniform with a thermal and strain gradient across the weld, and hence the dynamic recrystallisation (DRX) processes are also variable, giving a range of observed polycrystalline and grain boundary structures. Partial DRX was observed at both hourglass boundaries, and full DRX at mid-stirring zone. The grain boundary mapping showed the formation of low-angle grain boundaries (LAGBs) at regions of high shear as a consequence of thermomechanical nature of the process.


Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Caroline Bollinger ◽  
Billy Nzogang ◽  
Alexandre Mussi ◽  
Jérémie Bouquerel ◽  
Dmitri Molodov ◽  
...  

Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed at rather low temperatures (i.e., below 1200 °C). In this study, we focused on the recovery mechanisms involving grain boundaries and recrystallization. We investigated forsterite samples deformed at large strains at 1100 °C. The deformed microstructures were characterized by transmission electron microscopy using orientation mapping techniques (ACOM-TEM). With this technique, we increased the spatial resolution of characterization compared to standard electron backscatter diffraction (EBSD) maps to further decipher the microstructures at nanoscale. After a plastic strain of 25%, we found pervasive evidence for serrated grain and subgrain boundaries. We interpreted these microstructural features as evidence of occurrences of grain boundary migration mechanisms. Evaluating the driving forces for grain/subgrain boundary motion, we found that the surface tension driving forces were often greater than the strain energy driving force. At larger strains (40%), we found pervasive evidence for discontinuous dynamic recrystallization (dDRX), with nucleation of new grains at grain boundaries. The observations reveal that subgrain migration and grain boundary bulging contribute to the nucleation of new grains. These mechanisms are probably critical to allow peridotitic rocks to achieve large strains under a steady-state regime in the lithospheric mantle.


2012 ◽  
Vol 1383 ◽  
Author(s):  
Fan Zhang ◽  
David P. Field

ABSTRACTAlloy 617, a high-temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the next generation nuclear plant, which is highly influenced by thermal creep. The main objective of this study is to inspect the crept grain boundaries under its imitated working condition, and to determine which boundaries are susceptible to damage and which are more resistant, in order to help improve its creep resistance in future manufacturing. Electron backscatter diffraction was used to measure the proportions of each boundary by observing and analyzing these crept microstructures. The grain-boundary distribution can be expressed in terms of five parameters including three parameters of lattice misorientation and two parameters of the grain-boundary plane normal. Three conditions were analyzed: the original material, metal that was annealed without stress, and ones that were crept at 1000ºC at 19 MPa and 25 MPa for various times. Though observation, it is found that the voids seldom occur at low angle grain boundaries, and coherent twin boundaries are also resist to creep damage.


2000 ◽  
Vol 6 (S2) ◽  
pp. 940-941
Author(s):  
A.J. Schwartz ◽  
M. Kumar ◽  
P.J. Bedrossian ◽  
W.E. King

Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of “special” and “random” grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM)5 and atomic force microscopy (AFM) to elucidate these fundamental mechanisms.An example of the coupling of TEM and EBSD is given in Figures 1-3. The EBSD image in Figure 1 reveals “segmentation” of boundaries from special to random and random to special and low angle grain boundaries in some grains, but not others, resulting from the 15% compression of an Inconel 600 polycrystal.


2020 ◽  
Author(s):  
Joe Gardner ◽  
Jacob Tielke ◽  
Julian Mecklenburgh ◽  
Elisabetta Mariani ◽  
John Wheeler

<p>Earth’s mantle is predicted to contain as much or more water as its hydrosphere, which is important because the presence of water lowers the viscosity of mantle rocks. How water is distributed within mantle rocks is therefore fundamental to understanding Earth’s geodynamic behaviour, but the picture currently remains unclear. On the grain scale, previous analyses have revealed incompatible element partitioning in grain boundaries using EPMA, and the presence of H-enriched regions close (tens of µm) to grain boundaries using synchrotron-based FT-IR. The results of such studies have been used to suggest that grain boundaries may store water in concentrations hundreds of times higher than in grain interiors. Chemical segregation at grain boundaries is generally accepted to influence grain boundary diffusivity, which in turn affects the bulk viscosity of materials deforming by diffusion creep, a mechanism which is predicted to dominate the deformation of large parts of the mantle.</p><p>This study was designed to directly image the distribution of heavy water (D<sub>2</sub>O) at the nanoscale in a synthetic peridotite sample using high-resolution secondary ion mass spectrometry (NanoSIMS), for the first time. The sample was annealed at temperature and pressure conditions typical of Earth’s upper mantle (1250 °C, 0.3 GPa) for three hours, to facilitate diffusion of <sup>2</sup>H into olivine and pyroxene grains. Preliminary NanoSIMS results suggested that the partitioning of <sup>2</sup>H into grain boundary regions, where observed, was at least an order of magnitude lower (partition coefficient of ~10<sup>1</sup>) than has previously been predicted, indicating that, for typical mantle grain sizes, grain boundaries do not act as a significant storage reservoir for water in Earth’s mantle (or those of other terrestrial planets). The initial data were limited to a relatively small number of boundaries per sample. In this phase of the study, electron backscatter diffraction data has been collected from a single sample to characterise grain (mis)orientations at multiple sites suitable for NanoSIMS analyses. This is necessary because the strength of the chemical signature collected within grains and at grain boundaries using NanoSIMS is dependent on the orientations of those grains with respect to the NanoSIMS beam (matrix effects), the angle of the grain boundary with respect to the sample surface, and the misorientation angle between the two grains that comprise the boundary of interest. <sup>2</sup>H, <sup>16</sup>O, <sup>16</sup>O<sup>2</sup>H and <sup>28</sup>Si measurements will be collected from multiple boundaries by NanoSIMS using a Cs<sup>+</sup> beam with a 100 nm diameter to quantify grain boundary partitioning. The NanoSIMS isotope profiles will be presented as <sup>2</sup>H/<sup>28</sup>Si ratios to account for variation in measured isotope concentrations due to matrix effects. The results of the analysis will help quantify the degree to which water undergoes grain boundary segregation in mantle rocks under equilibrium partitioning conditions.</p>


Four photographs of bubble rafts are used as a basis for discussion of the structure of grain boundaries in pure metals. In these photographs one can follow the gradual transition from a small-angle boundary made up of clearly separate dislocations to a large-angle boundary where the dislocation structure is hardly recognizable. As the angle is increased, a continuous shortening of the dislocations, accompanied by the widening of a crack on the tensile side, is seen, and the process culminates in a structure which is perhaps best described in terms of local fit and misfit. The fact is also illustrated that the dislocation content of the boundary depends on the angle of the boundary, as well as on the disorientation of the crystals that it separates. If a boundary turns it must therefore gain or lose dislocations. The bearing of this on the measurement of grain-boundary energies is discussed. Other points considered concern the range of validity of calculations of the energy of dislocation walls, and slip and diffusion along grain boundaries.


2021 ◽  
Author(s):  
Kazuho Daicho ◽  
Kayoko Kobayashi ◽  
Shuji Fujisawa ◽  
Tsuguyuki Saito

Abstract Crystallite refers to a single crystalline grain in crystal aggregates, and multiple crystallites form a grain boundary or the inter-crystallite interface. A grain boundary is a structural defect that hinders the efficient directional transfer of mechanical stress or thermal phonons in crystal aggregates. We observed that grain boundaries within an aggregate of a-few-nanometers-wide fibrillar crystallites of cellulose were crystallized by enhancing their inter-crystallite interactions; multiple crystallites were coupled into single fusion crystals without passing through a melting or dissolving state. Accordingly, the crystallinity of naturally occurring cellulose, which has previously been considered irreversible once decreased, was recovered, and the thermal energy transfer in the aggregate was significantly improved. Other fibrillar crystallites of chitin also showed a similar fusion phenomenon by enhancing the inter-crystallite interactions. Crystallite fusion in aggregates may occur for other biopolymers.


2013 ◽  
Vol 46 (2) ◽  
pp. 483-492 ◽  
Author(s):  
Mariusz Jedrychowski ◽  
Jacek Tarasiuk ◽  
Brigitte Bacroix ◽  
Sebastian Wronski

The main aim of the present work is to study the relation between microstructural features – such as local misorientations, grain orientation gradients and grain boundary structures – and thermomechanical treatment of hexagonal zirconium (Zr702α). Electron backscatter diffraction (EBSD) topological maps are used to analyze the aforementioned material parameters at the early stages of plastic deformation imposed by channel-die compression, as well as at a partial recrystallization state achieved by brief annealing. The evolution of local misorientations and orientation gradients is investigated using the so-called kernel average misorientation (KAM) and grain orientation spread (GOS) statistics implemented in the TSLOIMdata analysis software [TexSEM Laboratories (2004), Draper, UT, USA]. In the case of grain boundaries (GBs) a new method of analysis is presented. As an addition to the classical line segments method, where the grain boundary is represented by line segments that separate particular pairs of neighboring points, an approach that focuses on grain boundary areas is proposed. These areas are represented by sets of EBSD points, which are specially selected from a modified calculation procedure for the KAM. Different evolution mechanisms of intragranular boundaries, low-angle grain boundaries and high-angle grain boundaries are observed depending on the compression direction. The observed differences are consistent with the results obtained from KAM and GOS analysis. It is also concluded that the proposed method of grain boundary characterization seems to be promising, as it provides new and interesting analysis tools such as textures, absolute fractions and other EBSD statistics of the GB areas. This description may be more compatible with a real deformed microstructure, especially for grain boundaries with very small misorientation, which are indeed clustered areas of lattice defect accumulation.


2007 ◽  
Vol 539-543 ◽  
pp. 3389-3394 ◽  
Author(s):  
Wei Guo Wang

The progress of grain boundary engineering (GBE) is overviewed and the challenges for further investigations emphasized. It points out that, the electron backscatter diffraction (EBSD) reconstruction of grain boundaries, which gives the information of connectivity interruption of general high angle boundaries (HABs), is more significant than purely pursuing high frequency of so-called special boundaries. The criterion for the optimization of grain boundary character distribution (GBCD) needs to be established. The energy spectrum and the degradation susceptibility of grain boundaries of various characters including HABs and low Σ(Σ≤29) coincidence site lattice (CSL) needs to be studied and ascertained. And finally, the newly proposed model of non-coherent Σ3 interactions for GBCD optimization are discussed.


Sign in / Sign up

Export Citation Format

Share Document