scholarly journals An Evaluation of the Reliability of the Results Obtained by the LBET, QSDFT, BET, and DR Methods for the Analysis of the Porous Structure of Activated Carbons

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3929 ◽  
Author(s):  
Mirosław Kwiatkowski ◽  
Elżbieta Broniek

This paper presents the results of an analysis of the impact of the activator to the product of carbonized materials mass ratio on the porous structure of activated carbons prepared from mahogany, ebony, and hornbeam wood by carbonization and chemical activation with potassium hydroxide. The analyses were carried out on nitrogen adsorption isotherms using the Brunauer–Emmett–Teller (BET), Dubinin-Radushkevitch (DR), and Quenched Solid Density Functional Theory (QSDFT) methods, as well as the numerical clustering-based adsorption analysis (LBET) method. The activated carbons with the best adsorption properties and homogeneous surfaces were prepared at a mass ratio of R = 3. The analyses suggest the significant potential of producing adsorbents characterized by a large surface area and adsorptive capacity from raw materials such as mahogany, ebony, and hornbeam wood. The analyses in question also included an evaluation of the usability and reliability of the results obtained with the employed methods of structural analysis. Particular focus was placed on the limitations of adsorption models and on critically analyzing the output data. Our study shows the unique advantages of the LBET method compared to the other methods used. The LBET method allowed us, for example, to determine the degree of heterogeneity of the surface of the studied activated carbons and the shape of the clusters of adsorbate molecules formed in the pores of the studied material, as well as obtain information about the distribution of adsorption energy on the first adsorbed layer. This study also demonstrates the limitations of the methods used and the necessity to use LBET and QSDFT methods simultaneously for porous structural analysis. The simultaneous analysis of the adsorption isotherms via the LBET and the QSDFT methods makes it possible to choose the optimal preparation conditions while considering the properties of the original raw material. The analyses also suggest the complementary character of the employed methods and the scope of the useful and reliable information that can be obtained with these methods.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4121
Author(s):  
Mirosław Kwiatkowski ◽  
Elżbieta Broniek

In this study, the preparation of activated carbons from various materials of biomass origin by activation with potassium hydroxide and a comprehensive computer analysis of their porous structure and adsorption properties based on benzene (C6H6) adsorption isotherms were carried out. In particular, the influence of the mass ratio of the activator’s dry mass to the char mass on the formation of the microporous structure of the obtained activated carbons was analysed. The summary of the analyses carried out based on benzene adsorption isotherms begged the conclusion that activated carbon with a maximum adsorption volume in the first adsorbed layer and homogeneous surface can be obtained from ebony wood at a mass ratio of the activator to the char of R = 3. The obtained results confirmed the superiority of the new numerical-clustering-based adsorption analysis (LBET) method over simple methods of porous structure analysis, such as the Brunauer–Emmett–Teller (BET) and Dubinin–Raduskevich (DR) methods. The LBET method is particularly useful in the evaluation of the influence of the methods and conditions of production of activated carbons on the formation of their porous structure. This method, together with an appropriate economic analysis, can help in the precise selection of methods and conditions for the process of obtaining activated carbons at specific manufacturing costs, and thus makes it possible to obtain materials that can successfully compete with those of other technologies used in industrial practice and everyday life.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Mirosław Kwiatkowski ◽  
Elżbieta Broniek ◽  
Vanessa Fierro ◽  
Alain Celzard

This paper presents the results of an evaluation of the impact of the amount of potassium hydroxide on the obtained porous structure of the activated carbons derived from the shells of pistachios, hazelnuts, and pecans by carbonization and subsequent chemical activation with potassium hydroxide by different adsorption methods: Brunauer–Emmett–Teller, Dubinin–Raduskevich, the new numerical clustering-based adsorption analysis, Quenched Solid Density Functional Theory, and 2D-Non-linear Density Functional Theory for Heterogeneous Surfaces, applied to nitrogen adsorption isotherms at −196 °C. Based on the conducted research, a significant potential for the production of activated carbons from waste materials, such as nut shells, has been demonstrated. All the activated carbons obtained in the present study at the activator/char mass ratio R = 4 exhibited the most developed porous structure, and thus very good adsorption properties. However, activated carbons obtained from pecan shells deserve special attention, as they were characterized by the most homogeneous surface among all the samples analyzed, i.e., by a very desirable feature in most adsorption processes. The paper demonstrates the necessity of using different methods to analyze the porous structure of activated carbons in order to obtain a complete picture of the studied texture. This is because only a full spectrum of information allows for correctly selecting the appropriate technology and conditions for the production of activated carbons dedicated to specific industrial applications. As shown in this work, relying only on the simplest methods of adsorption isotherm analysis can lead to erroneous conclusions due to lack of complete information on the analyzed porous structure. This work thus also explains how and why the usual characterizations of the porous structure of activated carbons derived from lignocellulosic biomass should not be taken at face value. On the contrary, it is advisable to cross reference several models to get a precise idea of the adsorbent properties of these materials, and therefore to propose the most suitable production technology, as well as the conditions of the preparation process.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1540
Author(s):  
Mirosław Kwiatkowski ◽  
Xin Hu

This paper presents results of the analysis of the impact of activation temperature and mass ratio of activator to carbonized precursor R on the porous structure of nitrogen-doped activated carbons derived from lotus leaves by carbonization and chemical activation with sodium amide NaNH2. The analyses were carried out via the new numerical clustering-based adsorption analysis (LBET) method applied to nitrogen adsorption isotherms at −195.8 °C. On the basis of the results obtained it was shown that the amount of activator, as compared to activation temperatures, has a significantly greater influence on the formation of the porous structure of activated carbons. As shown in the study, the optimum values of the porous structure parameters are obtained for a mass ratio of R = 2. At a mass ratio of R = 3, a significant decrease in the values of the porous structure parameters was observed, indicating uncontrolled wall firing between adjacent micropores. The conducted analyses confirmed the validity of the new numerical clustering-based adsorption analysis (LBET) method, as it turned out that nitrogen-doped activated carbons prepared from lotus leaves are characterized by a high share of micropores and a significant degree of surface heterogeneity in most of the samples studied, which may, to some extent, undermine the reliability of the results obtained using classical methods of structure analysis that assume only a homogeneous pore structure.


2016 ◽  
Vol 73 (11) ◽  
pp. 2654-2661 ◽  
Author(s):  
Shuxiong Tang ◽  
Yao Chen ◽  
Ruzhen Xie ◽  
Wenju Jiang ◽  
Yanxin Jiang

Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g−1 at 298 K. The Brunauer–Emmett–Teller and iodine adsorption value of the produced activated carbon could be 924.9 m2 g−1 and 1,188 mg g−1, respectively. Under the initial Cr(VI) concentration of 10 mg L−1 and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L−1. The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6067
Author(s):  
Mirosław Kwiatkowski

The results of the advanced computer analysis of the influence of time and gas atmosphere of the chemical activation process on the microporous structure formation of activated carbons prepared from oil palm shell via microwave irradiation and activation, using potassium hydroxide as an activation agent, are presented in this paper. The quenched solid density functional theory (QSDFT) and the new numerical clustering-based adsorption analysis (LBET) methods were used especially in the analysis of the microporous structure of the activated carbons, taking into account the surface heterogeneity, and the results obtained were confronted with the simple results achieved earlier using Brunauer–Emmett–Teller (BET) and T-plot methods. On the basis of the computer analysis carried out and taking into account the results obtained, it has been shown that the material with the best adsorption properties and suitable for practical industrial applications is activated carbon obtained in a gaseous nitrogen atmosphere at an activation time of 30 min. Moreover, the value of the heterogeneity parameter indicates that the surface area of this activated carbon is homogeneous, which is of particular importance in the practical application. The paper emphasizes that an erroneous approach to the interpretation of analytical results based on gas adsorption isotherms, which consists in basing conclusions only on the values of a single parameter such as specific surface area or micropore volume, should be avoided. Therefore, it is recommended to use in the analysis of measurement data, several methods of porous structure analysis, including methods considering the heterogeneity of the surface, and when interpreting the results one should also take into account the adsorption process for which the analyzed materials are dedicated.


Author(s):  
Guoqiao Wang ◽  
Sicong Yao ◽  
Yao Chen ◽  
Meicheng Wang ◽  
Lizhi He

: Activated carbons were prepared from sewage sludge by chemical activation with pyrolusite (PAC) and lithium-silicon powder addition (LSAC) to develop effective adsorbents for the removal of Cu(II), Pb(II), Cd(II) and Cr(III) metal ions from aqueous solution. Both modifiers with optimum dosage 1% (wt.) were demonstrated to exhibit important effects on the formation of adsorbent’s pore structure. PAC and LSAC showed 17.06% and 8.38% higher BET surface area than the common one without modification (AC). The XPS result showed that after modification, the hydroxyl and carboxyl groups on modified activated carbons surface were remarkably improved comparing with the ordinary carbon. The adsorption results in single ion solution showed that the metal ions’ removal rates were 13~29% and 20~43% increment, respectively, by LSAC and PAC comparing with AC’s. Adsorption isotherm and kinetics studies showed that adsorption of heavy metal ions onto the modified adsorbents was well fitted by the Langmuir isotherm and could be described by the pseudo-second-order kinetic model. In a multi-ions solution system, the produced carbons showed high affinity and good selective adsorptive capacity on Cu (II), Pb (II) removal, while an improvement adsorption towards Cd(II) and Cr(III) were observed. It will help a lot in wastewater industries due to its efficiency and low-price.


Sign in / Sign up

Export Citation Format

Share Document