scholarly journals Ultrasonic Cavitation Erosion Behavior of AlCoCrxCuFe High Entropy Alloy Coatings Synthesized by Laser Cladding

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4067
Author(s):  
Danqing Yin ◽  
Guangbing Liang ◽  
Shuai Fan ◽  
Shanxin Li

Cavitation corrosion resistant coatings are an excellent solution to the cavitation corrosion problem. High entropy alloys provide a new possibility for cavitation resistant coatings due to their excellent comprehensive performance. Laser cladding was employed to synthesize AlCoCrxCuFe (x represents the Cr concentration, x = 0.5, 1.0, 1.5, 2.0) high entropy alloy coatings (HECs) on AISI 304 steel. The phase transformation, microstructure, micro-mechanical properties, and cavitation erosion performance of HECs were studied. Results showed that AlCoCrxCuFe HECs were composed of BCC and FCC duplex phase. The microstructure of HECs showed a typical dendritic structure. The composition segregation of interdendrite structures was observed. Cavitation erosion resistance represented by 20 h volume loss was decreased with the increase in Cr content. AlCoCrxCuFe HECs with the lowest chromium content (AlCoCr0.5CuFe) showed the best cavitation erosion resistance among all samples. The cavitation resistance of AlCoCrxCuFe HECs has good correlation with the mechanical parameter Hn3/Er2 (Hn is nanohardness, Er is elastic modulus) and phase formation parameter δ (δ is atomic radius difference). The surface after 20 h of cavitation erosion testing exposed the dendritic structure of BCC phase, which was caused by the destruction of the interdendrite structure by cavitation impact.

2020 ◽  
pp. 1-6
Author(s):  
Bing-qi Xie ◽  
Ye-feng Bao ◽  
Chong-hui Zhong ◽  
Qi-ning Song ◽  
Ke Yang ◽  
...  

2019 ◽  
Vol 956 ◽  
pp. 154-159 ◽  
Author(s):  
Hui Liang ◽  
Bing Yang Gao ◽  
Ya Ning Li ◽  
Qiu Xin Nie ◽  
Zhi Qiang Cao

For the purpose of expanding the application scope of HEA coating manufactured on the surface modification of materials, in this work, the Al1.5CrFeNiTi0.5 and Al1.5CrFeNiTi0.5W0.5 HEA coatings were successfully manufactured using laser cladding method on SUS304. The microstructures and wear resistance of coatings are researched systematically. It is found that the W0 and W0.5 HEA coatings all exhibit the dendritic structure, which are constituted by BCC phases and Laves phases. With W element addition, the phase structures of W0.5 coating remain unchanged. W is dissolved in both two phases, but the solid solubility in Laves phase is higher compared to that in BCC phase. W0.5 coating with the highest microhardness of 848.34 HV, and the W0 coating with the microhardness of 811.45 HV, both of whose microhardness are four times more than that of SUS304 substrate. Among all samples, the W0.5 coating shows the optimal wear performance because of its larger content of hard second phase ( Laves phase).


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 358
Author(s):  
Peng Zhao ◽  
Jun Li ◽  
Ruyan Lei ◽  
Baige Yuan ◽  
Manman Xia ◽  
...  

AlCrCoNiFeCTax (x = 0, 0.5 and 1.0) high-entropy alloys coatings were synthesized on 45# steel by laser cladding. The microstructural evolution of the coatings with the change in x was analyzed in detail. The effect of Ta content on the wear behaviors of the coatings at different circumstances (in air and 3.5 wt.% NaCl solution) was especially highlighted. The microstructure presented the following change: equiaxed BCC (Body Centered Cubic) grains + fine MC (carbide, M = Al, Cr, Co and Ni) particles (x = 0) → equiaxed BCC grains + coarse TaC blocks + fine TaC particles (x = 0.5) → flower-like BCC grains + coarse TaC blocks + eutecticum (BCC + TaC) (x = 1.0). The average microhardness of the coatings demonstrated an upward tendency with increasing x due to the combination of the stronger solid solution and dispersion strengthening from the significant difference in atomic radius between Ta and Fe and the formation of TaC with an extremely high hardness. The wear rates of the coatings were gradually reduced both in air and in NaCl solution along with the increase in Ta content, which were lower than those of the substrate. The wear rates of the coatings with x = 0.5 and 1.0 in NaCl solution were slightly reduced by about 17% and 12% when compared with those in air. However, the values of the substrate and the coating without Ta in NaCl solution were sharply enhanced by 191% and 123% when compared with those in air. This indicated that the introduction of Ta contributed to the improvement in wear resistance both in air and in NaCl solution.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Zhaolei Sun ◽  
Mingyuan Zhang ◽  
Gaoqi Wang ◽  
Xuefeng Yang ◽  
Shouren Wang

FeCoNiTiAlx (x = 0, 0.5, 1) high-entropy alloy coatings were prepared by laser cladding technology. The phase, microstructure, hardness, wear resistance and corrosion resistance were tested and analyzed. The results showed Al element promoted the conversion from the FCC phase to the BCC phase. The coating presented dendritic structure due to the addition of the Al element, while the number of dendrites increased. And the average hardness of the coating increased from 204 to 623 HV. The addition of the Al element increases the corrosion current density of the coating from 1.270 × 10−5 to 3.489 × 10−5 A/cm2. The wear rate of the coatings decreases with the increase of Al content according to dry friction and wear, which indicates the wear resistance of the coating was improved by adding the Al element. According to the corrosion wear test in 3.5% NaCl solution, it can be found that the wear rate of the coating increases firstly and then decreases with the addition of the Al element, which indicates that the addition of the Al element intensifies the wear of the coating in 3.5% NaCl solution.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 320
Author(s):  
Jingda Liu ◽  
Yuxin Guan ◽  
Xuechen Xia ◽  
Pai Peng ◽  
Qifeng Ding ◽  
...  

Al0.5CoCrCuFeNiSi high entropy alloy coating without and with a 1 wt.% Y2O3 addition was fabricated by laser cladding technique on H13 substrate. The results showed that the laser cladding coatings without and with Y2O3 addition consist of a mixture of body centered cubic (BCC) dendrites and face centered cubic (FCC) interdendrites. With the addition of Y2O3, the peaks of BCC dendrites in the coating shifted to leftwards, which is caused by the distortion of lattice due to the dissolution of Y with larger atomic radius. There exist cracks and porosities in the coating without Y2O3 addition. With Y2O3 addition, the cracks and porosities in the laser cladding coating were inhibited greatly. In addition, the microstructure of the coating with Y2O3 addition was refined due to the improving of the ratio of nucleation. The enhancement of properties, such as hardness, wear resistance and corrosion resistance, of the coating with Y2O3 addition came from the inhibition of cracks and porosities and the refinement of microstructure.


2019 ◽  
Vol 70 (5) ◽  
pp. 1655-1663
Author(s):  
George Coman ◽  
Mircea Cristian Pantilimon ◽  
Mirela Gabriela Sohaciu ◽  
Sorin Ciuca ◽  
Marius Gabriel Anton ◽  
...  

The paper presents cavitation erosion testing results of three stainless steels that may be used in making hydropower turbine parts. Two of these steels have a chemical composition close to that of some other stainless steels previously employed in producing these parts. They are updated steel grades of the former ones. The third one is newly conceived. Aiming better mechanical and corrosion resistance characteristics as well as an inclusion - free structural state, steels were produced in an induction furnace with cold copper crucible under vacuum and argon atmosphere. Quenching and tempering heat treatments were subsequently applied.


Author(s):  
Juliana Barbarioli ◽  
André Tschiptschin ◽  
Cherlio Scandian ◽  
Manuelle Curbani Romero

Sign in / Sign up

Export Citation Format

Share Document