scholarly journals Curcumin Incorporated Poly(Butylene Adipate-co-Terephthalate) Film with Improved Water Vapor Barrier and Antioxidant Properties

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4369
Author(s):  
Swarup Roy ◽  
Jong-Whan Rhim

Curcumin incorporated poly(butylene adipate-co-terephthalate) (PBAT) based film was fabricated. Curcumin has uniformly distributed in the PBAT matrix to form a bright yellow PBAT/curcumin film. The PBAT/curcumin film has slightly reduced tensile strength and flexibility than the neat PBAT film, while the thermal stability of the film has not changed significantly. The blending of curcumin significantly decreased the water vapor permeability of the PBAT film. Additionally, the PBAT/curcumin film showed potent antioxidant activity with some antimicrobial activity. The PBAT/curcumin films with improved water vapor barrier and additional functions can be used for active packaging applications.

2021 ◽  
Vol 60 (1) ◽  
Author(s):  
Gema Morales-Olán ◽  
María Antonieta Ríos-Corripio ◽  
Aleida Selene Hernández-Cázares ◽  
Placido Zaca-Morán ◽  
Silvia Luna-Suárez ◽  
...  

Research background. Amaranth flour (Amaranthus hypochondriacus) produces films with excellent barrier properties against water vapor, allowing food preservation, but the mechanical properties are poor versus to synthetic films. One strategy to improve these properties is the incorporation of nanoparticles. The particles can also serve as a vehicle for the addition of antioxidants agents into the films. The objective of this work was to optimize the formulation for preparation of amaranth flour films treated with antioxidant chia (Salvia hispanica L.) extract-loaded chitosan particles using RSM. Experimental approach. Chitosan nanoparticles with the extract were synthesized by ionic gelation, and the films were made by the casting method. Three independent variables were assigned: amaranth flour (4-6 %), glycerol (25-35 %), and chitosan nanoparticles loaded with the chia extract (0-0.75 %). We then evaluated the physical (thickness), mechanical (tensile strength, Young´s modulus, and elongation), barrier (water vapor permeability, moisture, and water solubility), and antioxidant properties of the films. The experimental results of the properties were analyzed using a Box-Behnken experimental design generating 15 runs with three replicates at the central point. Results and conclusions. Second and third order polynomial models were obtained from the ANOVA analysis of the evaluated responses, and high coefficients of determination were found (0.91-1.0). The films presented a water vapor permeability of 0.82-2.39·10-7 (g·mm)/(Pa·s·m2), a tensile strength of 0.33-1.63 MPa, and antioxidant activity of 2.24-5.65 %. The variables had different effects on the films: The glycerol negatively affected their properties, and the permeability values increased with amaranth flour concentration. The nanoparticles improved the mechanical, barrier, and antioxidant properties of the films versus films without nanosystems. The optimal formulation was 4 % amaranth flour, 25 % of glycerol, and 0.36 % of chitosan nanoparticles. The optimized films had better mechanical (1.62 MPa) properties, a low water vapor permeability value (0.91·10-7 (g·mm)/(Pa·s·m2)), and moderate antioxidant activity (6.43 %). Novelty and scientific contribution. The results show the effect of chitosan nanoparticles on the properties of amaranth flour films for the first time. The resulting equations are useful in the design of food packaging.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

Abstract Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.


Author(s):  
Jie Liu ◽  
Yanchun Liu ◽  
Eleanor M. Brown ◽  
Zhengxin Ma ◽  
Cheng-Kung Liu

The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging. 


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 280
Author(s):  
Rui Lu ◽  
Dur E. Sameen ◽  
Wen Qin ◽  
Dingtao Wu ◽  
Jianwu Dai ◽  
...  

Selenium is a natural element which exists in the human body and plays an important role in metabolism. Along with this, selenium also possesses antibacterial and antioxidant properties. Using selenium microparticles (SeMPs) in food packaging films is exceptional. In this experiment, a solution casting method was used to make film. For this purpose, we used polylactic acid (PLA) as a substrate for the formation of a film membrane while SeMPs were added with certain ratios to attain antibacterial and antioxidant properties. The effects of SeMPs on the PLA film and the value of SeMPs in food packaging film production were investigated. The effects of the SeMPs contents on the features of the film, such as its mechanical property, solubility, swelling capacity, water vapor permeability, antioxidant activity, and the antibacterial activity of the composite membrane against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains, were studied. The results manifest that the PLA/SeMPs films showed higher water resistance, UV resistance, antioxidant activity, and antibacterial activity than pure PLA film. When the concentration of SeMPs was 1.5 wt%, the composite membrane showed the best comprehensive performance. Although the tensile strength and elongation at break of the membrane were slightly reduced by the addition of SeMPs, the results show that PLA/SeMPs films are still suitable for food packaging and would be a very promising material for food packaging.


2014 ◽  
Vol 884-885 ◽  
pp. 481-484 ◽  
Author(s):  
Yan Wu ◽  
Ming Wei Yuan ◽  
Ji Yi Yang ◽  
Yu Yue Qin ◽  
Ming Long Yuan ◽  
...  

Thymol (TH), which has antimicrobial effect on many food pathogens, was incorporated as antimicrobial agent into composite poly (lactic acid)/poly (trimethylene carbonate)(PLA-PTMC) films. Antimicrobial active films based on PLA-PTMC were prepared by incorporating thymol at five different concentrations: 0, 3, 6, 9 and 12 %(w/w). The mechanical characterization, water vapor permeability (WVP), and antimicrobial activity of all formulations composite film were carried out. A decrease in elastic modulus was obtained for the active composite film compared with neat PLA-PTMC film. The presence of thymol decreased water vapor permeability, with a significant antimicrobial activity. Antimicrobial activities of films were tested against Escherichia coli, Staphylococcus aurous, Listeria, Bacillus subtilis, and Salmonella. Increasing amount of the thymol in the film caused a significant increase in inhibitory zones. These results suggest that thymol incorporated PLA-PTMC films have a prospectively potential in antimicrobial food packaging.


2012 ◽  
Vol 326-328 ◽  
pp. 170-175 ◽  
Author(s):  
Arlete Barbosa dos Reis ◽  
Cristiana Maria Pedroso Yoshida ◽  
Vera Solange Oliveira Farias ◽  
Wilton Pereira Silva

Chitosan is an abundant, natural polysaccaride obtained from fishing industry waste and films of chitosan also provide an efficient oxygen barrier. However, they are a poor water vapor barrier, which can be improved by incorporation of a hydrophobic compound, forming a emulsified film. Chitosan films were produced with the addition of palmitic acid lipid analysis and then the process in parallel with the diffusive permeability to water vapor. The objective of this work was to characterize the diffusion and water vapor permeability behavior of chitosan films and chitosan emulsified films.


2015 ◽  
Vol 6 (1) ◽  
pp. 80
Author(s):  
Matheus Luz Alberti ◽  
Sílvio José De Souza ◽  
Heliberto Gonçalves ◽  
Fabio Yamashita ◽  
Marianne Ayumi Shirai

<p>The use of blends containing biodegradable polymers like starch and poly (lactic acid) (PLA) has gained considerable attention, especially for the food packaging production. Current research has also highlighted the use of chitosan because their antimicrobial activity, biodegradability and applicability in the production of active biodegradable food packaging. The objective of this work was to produce cassava starch and PLA sheets incorporated with chitosan by flat extrusion process (calendering-extrusion), and evaluate the mechanical, water vapor barrier and microstructural properties. In order to simplify the obtainment of the material reducing processing steps, all components of the blend were homogenized in one step extrusion The incorporation of chitosan in the starch/PLA sheets decreased significantly the tensile strength, Young's modulus, elongation at break and density. In addition, the scanning electron microscopy images showed the formation of non-homogeneous mixtures with the presence of pores between the blend compounds, and this fact affected the water vapor barrier properties increasing water vapor permeability, solubility and diffusion coefficients. It was possible to conclude that although the incorporation of chitosan to the starch/PLA sheets has not contributed to obtain materials with suitable properties, it was able to produce them by calendering-extrusion process in pilot scale. Studies about chitosan incorporation in starch and PLA sheets still needed.</p><p>&nbsp;</p><p>DOI: 10.14685/rebrapa.v6i1.208</p><p>&nbsp;</p>


2021 ◽  
Author(s):  
Aritra Sinha

Abstract This study focuses on the development and characterization of a novel biodegradable edible film made from soy protein isolate enriched with alginate-glycyrrhizin nanogel(GL-ALG NGP). Nanoparticles of particle sizes below 100 nm were synthesized using glycyrrhizin(GL), calcium chloride and, sodium alginate(SA) through the reverse micro-emulsion/internal gelation method. Soy protein isolate (SPI) based films were prepared by a simple casting procedure by incorporating GL-ALG NGPs in SPI solution in different ratios of (SPI: GL-ALG NGPs) 5:0, 5:1, 2:1, 1:1, and 1:1.5. Glycerol was used as a plasticizer in the film-forming solution. The effects of the proportions of GL-ALG NGPs addition on the thickness, mechanical properties, water vapor permeability, UV barrier performance, antioxidant activity, and antimicrobial property of the obtained films were studied. The GL-ALG NGPs were analyzed using Dynamic Light Scattering. Microstructural studies of obtained films were performed using Scanning Electron microscopy. Results show incorporation of GL-ALG NGPs in soy protein-alginate complex produced smoother, compact, and more continuous matrices as compared to pure SPI films. The test results indicated that blending of SPI with GL-ALG NGPs in the ratio 1:1 increased tensile strength of obtained films by 185%, reduced water solubility to 23.59%, and water vapor permeability to 0.3087 g-mm/m2-d-kPa. Obtained films exhibited good UV barrier performance, antioxidant activity and inhibited the growth of E. coli, S. aureus, Enterobacter sakazakii, and A. niger. So, soy protein isolate-based films enriched with GL-ALG NGPs are active biodegradable edible films that can be used to extend the shelf life of food products.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1105 ◽  
Author(s):  
Giannakas ◽  
Salmas ◽  
Leontiou ◽  
Tsimogiannis ◽  
Oreopoulou ◽  
...  

The increased global market trend for food packaging is imposing new improved methods for the extension of shelf-life and quality of food products. Active packaging, which is based on the incorporation of additives into packaging materials, is becoming significant for this purpose. In this work, nanostructured low-density polyethylene (LDPE) was combined with chitosan (CS) to aim for a food packaging development with an increased oxygen permeability barrier and higher antimicrobial activity. Furthermore, essential oil extracts as rosemary (RO) and Melissa (MO) were added to this packaging matrix in order to improve its antioxidant properties and vanish food odor problems. The novel nanostructured active packaging film was tested using laboratory instrumental methods, such as thermogravimetry (TG), Fourier-transform infrared (FTIR) spectrometry, the X-ray diffraction (XRD) method, a dilatometer for tensile properties (DMA), and an oxygen permeation analyzer (OPA). Moreover, laboratorian tests according to ASTM standards were carried out for the estimation of water sorption, water vapor permeability, overall migration, and, finally, the antioxidant properties of such films. The experimental results have indicated that the final material exhibits advanced properties. More specifically, chitosan addition was observed to lead to an enhanced oxygen and water-vapor permeability barrier while the extracted essential oil addition led to enhanced tensile strength and antioxidant properties.


2013 ◽  
Vol 16 (3) ◽  
pp. 226-235 ◽  
Author(s):  
Paula Judith Pérez Espitia ◽  
Jhon Jairo Reina Pacheco ◽  
Nathália Ramos de Melo ◽  
Nilda de Fátima Ferreira Soares ◽  
Alba Manuela Durango

Listeria monocytogenes is a foodborne pathogen, able to survive and proliferate at refrigeration temperatures. As a result, ready-to-eat meat products have been associated with major outbreaks. Producing meat products involves lethal preservation treatments, e.g. thermal treatments. Listeria contamination, however, may be introduced when products are sliced and packaged at retail businesses or delicatessens. In Brazil, sliced bologna is very popular at retail markets. After slicing, however, bologna has a short shelf-life. The aim of this work was to study the effects of pediocin incorporation on the load at break, water vapor permeability rate and structure, by microscopic analysis, of antimicrobial cellulosic packaging. The potential application of the developed packaging for the preservation of bologna and inhibition of Listeria biofilm formation was also studied. Cellulosic antimicrobial packaging films were produced with cellulose acetate and acetone. Pediocin (commercially available concentrate ALTA TM 2341) was incorporated at 30, 40 and 50 % w/w. The load at break of films was studied using the Universal Testing Machine (Instron) at 10 °C and 25 °C. The water vapor permeability was determined by gravimetric method. A scanning electron microscope was used to study the developed packaging structure. Antimicrobial activity of films against Listeria innoucua and L. monocytogenes was tested both in vitro and in bologna samples. Results showed that values of load at break decreased with increasing concentrations of pediocin at 10 °C and 25 °C. Regarding water vapor permeability, only the control and 50 % pediocin films presented statistical difference, with the 50 % pediocin film being more permeable. In vitro tests showed antimicrobial activity against L. innocua. Cellulosic film with 50 % pediocin reduced L. monocytogenes growth on sliced bologna by 1.2 log cycles after 9 days and prevented biofilm formation on packaging and bologna surfaces. Hence, active cellulosic films made with 50 % pediocin in the form of commercially available concentrated ALTA™ 2341 have the potential of being used in a system of hurdle technologies as a final obstacle for L. monocytogenes control in bologna preservation.


Sign in / Sign up

Export Citation Format

Share Document