scholarly journals Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4803
Author(s):  
Krystian Mistewicz ◽  
Mirosława Kępińska ◽  
Marian Nowak ◽  
Agnieszka Sasiela ◽  
Maciej Zubko ◽  
...  

Piezocatalysis is a novel method that can be applied for degradation of organic pollutants in wastewater. In this paper, ferroelectric nanowires of antimony sulfoiodide (SbSI) have been fabricated using a sonochemical method. Methyl orange (MO) was chosen as a typical pollutant, as it is widely used as a dye in industry. An aqueous solution of MO at a concentration of 30 mg/L containing SbSI nanowires (6 g/L) was subjected to ultrasonic vibration. High degradation efficiency of 99.5% was achieved after an extremely short period of ultrasonic irradiation (40 s). The large reaction rate constant of 0.126(8) s−1 was determined for piezocatalytic MO decomposition. This rate constant is two orders of magnitude larger than values of reaction rate constants reported in the literature for the most efficient piezocatalysts. These promising experimental results have proved a great potential of SbSI nanowires for their application in environmental purification and renewable energy conversion.

Author(s):  
Evan Komp ◽  
Nida Janulaitis ◽  
Stephanie Valleau

Quantum and classical reaction rate constant calculations come at the cost of exploring potential energy surfaces. Due to the “curse of dimensionality”, their evaluation quickly becomes unfeasible as the system...


1997 ◽  
Vol 119 (2) ◽  
pp. 108-113 ◽  
Author(s):  
D. Y. Goswami ◽  
S. K. Sharma ◽  
G. D. Mathur ◽  
C. K. Jotshi

Solar detoxification technology has shown great promise for treatment of toxic compounds in the ground water and wastewater. However, detailed analysis of the impact of techno-economic parameters on the treatment cost for the detoxification process is lacking in the literature. In this paper, the impact of different process parameters on the treatment cost has been presented and various strategies for reducing the cost of treatment have been discussed. For the processes with the reaction rate constants less than 0.1 min−1, the system economics is very sensitive to the reaction rate constant and the unit reactor cost. However, for the reaction rate constant over 0.1 min−1 the general treatment costs can be reduced mainly by reducing the unit catalyst costs.


2016 ◽  
Vol 26 (5) ◽  
pp. 631-641 ◽  
Author(s):  
Yiwen Di ◽  
Jinhan Mo ◽  
Yinping Zhang ◽  
Jiewen Deng

Interfacial ozone-initiated chemistry can greatly influence human exposure to reactants and products in the indoor environment. As the nearest reaction interface to human body, clothing assumes an important role in the generation of ultrafine particles and volatile organic compounds when reacting with indoor ozone. However, little is known about the kinetics of ozone-clothing reactions. This investigation developed a convenient method to examine the reaction kinetic parameters of ozone-clothing reactions by using a field and laboratory emission cell. Deposition velocity can be determined in a short period by this method. The study found that the deposition velocity and reaction rate constant for ozone-cotton vest reactions were not significantly affected by the ozone concentration, air flow velocity and long soiling duration (>6 h) of the vest. However, whether or not the vest had been soiled with skin oil is key to the magnitude of the deposition velocity and reaction rate constant. The ozone deposition velocities on soiled cotton vest surface are approximately constant under typical indoor conditions. The deposition velocity and reaction rate constant of ozone-initiated reactions with soiled cotton vest are 0.79 ± 0.17 and 2.43 ± 0.71 cm/s, respectively, at room temperature.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2007 ◽  
Vol 544-545 ◽  
pp. 95-98 ◽  
Author(s):  
Jong Tae Jung ◽  
Jong Oh Kim ◽  
Won Youl Choi

The purpose of this study is to investigate the effect of the operational parameters of the UV intensity and TiO2 dosage for the removal of humic acid and heavy metals. It also evaluated the applicability of hollow fiber microfiltration for the separation of TiO2 particles in photocatalytic microfiltration systems. TiO2 powder P-25 Degussa and hollow fiber microfiltration with a 0.4 μm nominal pore size were used for experiments. Under the conditions of pH 7 and a TiO2 dosage 0.3 g/L, the reaction rate constant (k) for humic acid and heavy metals increased with an increase of the UV intensity in each process. For the UV/TiO2/MF process, the reaction rate constant (k) for humic acid and Cu, with the exception of Cr in a low range of UV intensity, was higher compared to that of UV/TiO2 due to the adsorption of the membrane surface. The reaction rate constant (k) increased as the TiO2 dosage increased in the range of 0.1~0.3 g/L. However it decreased for a concentration over 0.3 g/L of TiO2. For the UV/TiO2/MF process, TiO2 particles could be effectively separated from treated water via membrane rejection. The average removal efficiency for humic acid and heavy metals during the operational time was over 90 %. Therefore, photocatalysis with a membrane is believed to be a viable process for humic acid and heavy metals removal.


1990 ◽  
Vol 95 (D9) ◽  
pp. 13981 ◽  
Author(s):  
Gaunlin Shen ◽  
Masako Suto ◽  
L. C. Lee

2015 ◽  
Vol 713-715 ◽  
pp. 2789-2792
Author(s):  
Huan Yan Xu ◽  
Xue Li ◽  
Yan Li ◽  
Ping Li ◽  
Wei Chao Liu

An active dye, Methyl Orange (MO) was employed as the target pollutant to evaluate the photocatalytic activity of TiO2/schorl composite and the kinetics and thermodynamics of this process was emphasized in this work. Langmuir–Hinshelwood kinetic model was employed for the kinetic studies and the results revealed that the process of MO photocatalytic discoloration by TiO2/schorl composite followed one order reaction kinetic equation under different conditions. The reaction rate constant (k) increased with initial MO concentration decreasing. When the catalyst dosage or solution pH increased,kvalues increased and then decreased. The possible reasons for these phenomena were discussed. Finally, the thermodynamic parameters ΔG, ΔH, ΔSwere obtained by the classical Van't Hoff equation.


Author(s):  
Shigenori Togashi ◽  
Yukako Asano ◽  
Yoshishige Endo

The chemical reaction yield was predicted by using Monte Carlo simulation. The targeted chemical reaction of a performance evaluation using the microreactor is the consecutive reaction. The main product P1 is formed in the first stage with the reaction rate constant k1. Moreover, the byproduct P2 is formed in the second stage with the reaction rate constant k2. It was found that the yield of main product P1 was improved by using a microreactor when the ratio of the reaction rate constants became k1/k2 >1. To evaluate the Monte Carlo simulation result, the yields of the main products obtained in three consecutive reactions. It was found that the yield of the main product in cased of k1/k2 >1 increased when the microreactor was uesd. Next, a pilot plant involving the numbering-up of 20 microreactors was developed. The 20 microreactor units were stacked in four sets, each containing five microreactor units arranged. The maximum flow rate when 20 microreactors were used was 1 × 104 mm3/s, which corresponds to 72 t/year. Evaluation of the chemical performance of the pilot plant was conducted using a nitration reaction. The pilot plant was found to capable of increasing the production scale without decreasing the yield of the products.


2003 ◽  
Vol 3 (2) ◽  
pp. 1843-1891
Author(s):  
S. Kutsuna ◽  
L. Chen ◽  
O. Ohno ◽  
N. Negishi ◽  
K. Takeuchi ◽  
...  

Abstract. Methyl chloroform (1,1,1-trichloroethane, CH3CCl3) was found to decompose heterogeneously on seven types of standard clay minerals (23 materials) in dry air at 313 K in the laboratory. All reactions proceeded through the elimination of HCl; CH3CCl3 was converted quantitatively to CH2=CCl2. The activities of the clay minerals were compared via their pseudo-first-order reaction rate constants (k1). A positive correlation was observed between the k1 value and the specific surface area (S) of clay minerals, where the S value was determined by means of the general Brunauer-Emmett-Teller (BET) equation. The k1 value was anti-correlated with the value of n, a parameter of the general BET equation, and correlated with the water content that can be removed easily from the clay minerals. The reaction required no special pretreatment of clay minerals, such as heating at high temperatures; hence, the reaction can be expected to occur in the environment. Photoillumination by wavelengths present in the troposphere did not accelerate the decomposition of CH3CCl3, but it induced heterogeneous photodecomposition of CH2=CCl2. The temperature dependence of k1, the adsorption constants of CH3CC3 and CH2=CCl2, and a surface reaction rate constant were determined for an illite sample. The k1 value increased with increasing temperature. The amount of CH3CCl3 adsorbed on the illite during the reaction was proportional to the partial pressure of CH3CCl3. The reaction was sensitive to relative humidity and the k1 value decreased with increasing relative humidity. However, the reaction was found to proceed at a relative humidity of 22% at 313 K, although the k1 value was about one-twentieth of the value in dry air. The conditions required for the reaction may be present in major desert regions of the world. A simple estimation indicates that the possible heterogeneous decomposition of CH3CC3 on the ground surface in arid regions is worth taking into consideration when inferring the tropospheric lifetime of CH3CC3 and global OH concentration from the global budget concentration of CH3CCl3.


Sign in / Sign up

Export Citation Format

Share Document