scholarly journals Effects of MOVPE Growth Conditions on GaN Layers Doped with Germanium

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 354
Author(s):  
Dario Schiavon ◽  
Elżbieta Litwin-Staszewska ◽  
Rafał Jakieła ◽  
Szymon Grzanka ◽  
Piotr Perlin

The effect of growth temperature and precursor flow on the doping level and surface morphology of Ge-doped GaN layers was researched. The results show that germanium is more readily incorporated at low temperature, high growth rate and high V/III ratio, thus revealing a similar behavior to what was previously observed for indium. V-pit formation can be blocked at high temperature but also at low V/III ratio, the latter of which however causing step bunching.

Author(s):  
Dario Schiavon ◽  
Elżbieta Litwin-Staszewska ◽  
Rafał Jakieła ◽  
Szymon Grzanka ◽  
Piotr Perlin

The effect of growth temperature and precursor flows on the doping level and surface morphology of Ge-doped GaN layers was researched. The results show that germanium is more readily incorporated at low temperature, high growth rate and high V/III ratio, thus revealing a similar behavior to what was previously observed for indium. V-pit formation can be blocked at high temperature but also at low V/III ratio, the latter of which however causing step bunching.


1993 ◽  
Vol 312 ◽  
Author(s):  
Sarah R. Kurtz ◽  
J. M. Olson ◽  
D. J. Arent ◽  
A. E. Kibbler ◽  
K. A. Bertness

AbstractThe band gap of Ga0.5In0.5P is studied as a function of growth temperature, growth rate, and substrate misorientation. As each of these parameters is independently varied the band gap first decreases, then increases, resulting in “U” shaped curves. Each “U” shaped curve shifts if any other growth parameter is varied. The data presented here can be divided into two regions of parameter space. In the low temperature, low substrate misorientation, high growth rate region, the band gap is shown to decrease with increasing growth temperature, decreasing growth rate, and increasing substrate misorientation. In the high temperature, high substrate misorientation, low growth rate region, the opposite trends are observed. The implications of these data on the ordering mechanism are discussed.


2013 ◽  
Vol 740-742 ◽  
pp. 23-26 ◽  
Author(s):  
Naoyoshi Komatsu ◽  
Takeshi Mitani ◽  
Tetsuo Takahashi ◽  
Masayuki Okamura ◽  
Tomohisa Kato ◽  
...  

We have investigated growth rate and surface morphology of 4H-SiC single crystal grown from Si-C solution with various supersaturation levels at growth temperature in the range from 1840 to 2140 °C. The growth rate depends linearly on the amount of supersaturated carbon, irrespective of the growth temperature. This indicates that the growth is limited by the transfer of solute element onto the crystallization front. The adequate condition for stable solution growth are discussed with respect to high growth rate and surface morphology.


2011 ◽  
Vol 679-680 ◽  
pp. 115-118 ◽  
Author(s):  
Jawad ul Hassan ◽  
Peder Bergman ◽  
Anne Henry ◽  
Erik Janzén

The effect of different C/Si ratio on the surface morphology has been studied to optimize the on-axis homoepitaxial growth conditions on 4H-SiC substrates to improve the surface roughness of epilayers. The overall surface roughness is found to decrease with decreasing C/Si ratio. An order of magnitude lower surface roughness has been observed using C/Si ratio = 0.8 without disturbing the polytype stability in the epilayer. A high growth rate of 10 µm/h was achieved without introducing 3C inclusions. The epilayers grown at higher growth rate with C/Si ratio = 1 also had improvements in the surface roughness. 100% 4H polytype was maintained in the epilayers grown with C/Si ratio in the range of 1.2 to 0.8 and with high growth rate of 10 µm/h.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sae Katsuro ◽  
Weifang Lu ◽  
Kazuma Ito ◽  
Nanami Nakayama ◽  
Naoki Sone ◽  
...  

Abstract Improving current injection into r- and m-planes of nanowires (NWs) is essential to realizing efficient GaInN/GaN multiple quantum shell (MQS) NW-based light-emitting diodes (LEDs). Here, we present the effects of different p-GaN shell growth conditions on the emission characteristics of MQS NW-LEDs. Firstly, a comparison between cathodoluminescence (CL) and electroluminescence (EL) spectra indicates that the emission in NW-LEDs originates from the top region of the NWs. By growing thick p-GaN shells, the variable emission peak at around 600 nm and degradation of the light output of the NW-LEDs are elaborated, which is attributable to the localization of current in the c-plane region with various In-rich clusters and deep-level defects. Utilizing a high growth rate of p-GaN shell, an increased r-plane and a reduced c-plane region promote the deposition of indium tin oxide layer over the entire NW. Therefore, the current is effectively injected into both the r- and m-planes of the NW structures. Consequently, the light output and EL peak intensity of the NW-LEDs are enhanced by factors of 4.3 and 13.8, respectively, under an injection current of 100 mA. Furthermore, scanning transmission electron microscope images demonstrate the suppression of dislocations, triangular defects, and stacking faults at the apex of the p-GaN shell with a high growth rate. Therefore, localization of current injection in nonradiative recombination centers near the c-plane was also inhibited. Our results emphasize the possibility of realizing high efficacy in NW-LEDs via optimal p-GaN shell growth conditions, which is quite promising for application in the long-wavelength region.


2018 ◽  
Vol 112 (4) ◽  
pp. 042101 ◽  
Author(s):  
Kevin L. Schulte ◽  
Anna Braun ◽  
John Simon ◽  
Aaron J. Ptak

2010 ◽  
Vol 645-648 ◽  
pp. 63-66 ◽  
Author(s):  
Guoli L. Sun ◽  
Irina G. Galben-Sandulache ◽  
Thierry Ouisse ◽  
Jean Marc Dedulle ◽  
Michel Pons ◽  
...  

The Continuous Feed-Physical Vapor Transport Technique (CF-PVT) was optimized by considering the heating, thermal insulation and the geometry of growth cavity. The effects of seeds on the surface morphology of the grown layer have been discussed. We successfully grew 3C-SiC bulk with a diameter of 7.0 mm and 3.3 mm in height with a high growth rate of 0.8 mm/h by the CF-PVT technique.


2006 ◽  
Vol 501 (1-2) ◽  
pp. 338-340 ◽  
Author(s):  
Aad Gordijn ◽  
Jeroen Francke ◽  
Jatindra K. Rath ◽  
Ruud E.I. Schropp

2019 ◽  
Vol 485 ◽  
pp. 381-390 ◽  
Author(s):  
Taewook Nam ◽  
Hyunho Lee ◽  
Taejin Choi ◽  
Seunggi Seo ◽  
Chang Mo Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document