scholarly journals The Sclerometrical, Mechanical, and Wear Behavior of Mg-Y-Nd Magnesium Alloy after Deep Cryogenic Treatment Combined with Heat Treatment

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1218
Author(s):  
Adrian Barylski ◽  
Krzysztof Aniołek ◽  
Grzegorz Dercz ◽  
Marian Kupka ◽  
Izabela Matuła ◽  
...  

The paper investigates changes in the structure, microhardness, and sclerometrical and tribological properties of a Mg-Y-Nd alloy under the influence of deep cryogenic treatment (DCT) in combination with heat treatment. The solution treatment was carried out at 545 °C for 8 h, aging was carried out at 250 °C for 24 h, and the deep cryogenic treatment applied at different treatment stages was performed at −196 °C. Tests showed a significant increase in the number of β-phase precipitates identified as Mg46.1Y6.25RE3.45 in the alloy subjected to DCT after solution treatment followed by aging. In addition, an approximately 20% reduction of the grain size was observed. Changes in the structure in the precipitation process strengthened the alloy and resulted in an increase of its hardness. At the same time, sclerometric tests allowed the micromechanism of wear and the coefficient of resistance to abrasive wear to be determined. Tribological tests showed a three-fold reduction in the volumetric wear and a considerable reduction of the friction coefficient, with the main mechanism observed during friction being abrasive wear. The most favorable properties of the alloy were obtained after precipitation hardening combined with DCT, resulting in a large increase in resistance to abrasive wear. Additionally, the formation of deep scratches in the examined material was reduced. The introduction of sub-zero treatment reduces the precipitation hardening time, and the results obtained indicate that the service life of the Mg-Y-Nd alloy can be extended.

MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


2014 ◽  
Vol 592-594 ◽  
pp. 1331-1335 ◽  
Author(s):  
Haider Nasreen ◽  
S. Beer Mohamed ◽  
S. Rasool Mohideen

This paper helps in understanding the effects of cryogenic treatment on microstructural variation, hardness and wear behavior of Ti-6Al-4V alloy. The microstructure indicates white β-phase dispersed on the grain boundaries of dark α-phase. Cryogenic treatment at-186 °C for 10 h led to the transformation from β-phase to α-phase, resulting in coarsening of α. Hardness of the cryogenically treated sample was observed to decrease and wear loss was observed to increase; this can be attributed to the coarsening of α-phase.


Author(s):  
Patricia Jovičević-Klug ◽  
Bojan Podgornik

Deep cryogenic treatment (DCT) is a type of cryogenic treatment, where a metallic material is subjected to temperatures below -150°C, normally to temperatures of liquid nitrogen (-196 °C). When a material is exposed to DCT as a part of heat treatment, changes in microstructure are induced due to new grain formation, changes in grain size, change in the solubility of atoms, movement of dislocations, alteration of crystal structure, and finally new phase formation. The metallic material's performance and later performance of manufactured components and tools from this specific material are dependent on the selection of proper design, proper material, accuracy with which the tool is made and application of proper heat treatment, including any eventual DCT. Metallic materials are ferrous and non-ferrous metals. In the last years ferrous metals (different grades of steel) and non-ferrous alloys (aluminum, magnesium, titanium, nickel etc.) have been increasingly treated with DCT to alter their properties. DCT treatment has shown to reduce density of defects in crystal structure, increase wear resistance of material, increase hardness, improve toughness, and reduce tensile strength and corrosion resistance. However, some researchers also reported results showing no change in properties (toughness, hardness, corrosion resistance, etc.) or even deterioration when subjected to DCT treatment. This leads to a lack of consistency and reliability of the treatment process, which is needed for successful application in industry. This review provides a synopsis of DCT usage and resulting effects on treated materials used in automotive industry.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2020 ◽  
Vol 1158 ◽  
pp. 17-26
Author(s):  
Abraão Silva ◽  
Thiago Figueiredo Azevedo ◽  
Weslley Rick Viana Sampaio ◽  
Luiz Carlos Pereira ◽  
Sandro Griza

TiNbSn alloys have been extensively researched due to several properties they exhibit, including high mechanical strength, low elastic modulus, superelasticity, shape memory effect, biocompatibility. The present study evaluated the cryogenic heat treatment in the Ti35NbxSn alloys (x = 0.0; 2.5; 5.0; 7.5). The alloys were arc melted, cold formed and quenched in both water and liquid nitrogen at-198° C. The Ti35Nb2.5Sn alloy was also aged after exposed to both quenching medium. Microstructure and microhardness analyses were performed. Cryogenic treatment was not enough for transformation of primary β phase into martensitic α” in alloys containing 5 and 7.5% Sn. Cryogenic treatment provided β to α” transformation in alloys containing 0 and 2.5% Sn. The Sn-free alloy was more likely to α" transformation in both quenching medium. The alloys microhardness increased with decrease of both quenching temperature and Sn content. The increase of α" is also related to the increase of the alloy microhardness after aging.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6157
Author(s):  
Matteo Vanzetti ◽  
Enrico Virgillito ◽  
Alberta Aversa ◽  
Diego Manfredi ◽  
Federica Bondioli ◽  
...  

Conventionally processed precipitation hardening aluminum alloys are generally treated with T6 heat treatments which are time-consuming and generally optimized for conventionally processed microstructures. Alternatively, parts produced by laser powder bed fusion (L-PBF) are characterized by unique microstructures made of very fine and metastable phases. These peculiar features require specifically optimized heat treatments. This work evaluates the effects of a short T6 heat treatment on L-PBF AlSi7Mg samples. The samples underwent a solution step of 15 min at 540 °C followed by water quenching and subsequently by an artificial aging at 170 °C for 2–8 h. The heat treated samples were characterized from a microstructural and mechanical point of view and compared with both as-built and direct aging (DA) treated samples. The results show that a 15 min solution treatment at 540 °C allows the dissolution of the very fine phases obtained during the L-PBF process; the subsequent heat treatment at 170 °C for 6 h makes it possible to obtain slightly lower tensile properties compared to those of the standard T6. With respect to the DA samples, higher elongation was achieved. These results show that this heat treatment can be of great benefit for the industry.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
P. Karuppusamy ◽  
K. Lingadurai ◽  
V. Sivananth

The present investigation explores the collective outcome of hard particle reinforcement with deep cryogenic treatment (DCT) on wear responses of magnesium metal matrix nanocomposites (MMNC). A multilevel factorial design of experiments with control factors of applied load (20 and 40 N), sliding speed (1.3, 1.7, 2.2, and 3.3 m/s), reinforcement % (0% and 1.5%), and cryogenic treatment (cryogenic-treated and nontreated) was deployed. Around 1.5 wt % WC-reinforced MMNC were fabricated using stir-casting process. DCT was performed at −190 °C with soaking time of 24 h. The dry sliding wear trials were done on pin-on-disk tribometer with MMNC pin and EN8 steel disk for a constant sliding distance of 2 km. The WC reinforcement contributed toward the improvement in wear rate of MMNC appreciably by absorbing the load and frictional heat at all loads and speeds. During DCT of AZ91, the secondary ß-phase (Mg17Al12) was precipitated that enriched the wear resistance, only for the higher load of 40 N. Scanning electron microscope analyses of the cryogenic-treated MMNC ensured the existence of both ß-phase precipitates and WC in the contact area. As a result, the adhesiveness of this pin was lesser, which attributed to the improved wear resistance (approximately 33%) as compared to base alloy. The coefficient of friction was also less for cryogenic-treated MMNC. A regression analysis was made to correlate the control elements and the responses.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1038 ◽  
Author(s):  
Pello Jimbert ◽  
Maider Iturrondobeitia ◽  
Julen Ibarretxe ◽  
Roberto Fernandez-Martinez

The effects of deep cryogenic treatment (DCT) on the wear behavior of different tool steels have been widely reported in the scientific literature with uneven results. Some tool steels show a significant improvement in their wear resistance when they have been cryogenically treated while others exhibit no relevant amelioration or even a reduction in their wear resistance. In this study, the influence of DCT was investigated for a grade that has been barely studied in the scientific literature, the AISI A8 air-hardening medium-alloy cold work tool steel. Several aspects were analyzed in the present work: the wear resistance of the alloy, the internal residual stress, and finally the secondary carbide precipitation in terms of lengths and occupied area and its distribution into the microstructure. The results revealed a reduction in the wear rate of about 14% when the AISI A8 was cryogenically treated before tempering. The number of carbides that precipitated into the microstructure was 6% higher for the cryogenically treated samples, increasing from 0.68% to 0.73% of the total area they covered. Furthermore, the distribution of the carbides into the microstructure was more homogenous for the cryogenically treated samples.


Sign in / Sign up

Export Citation Format

Share Document