scholarly journals Lumped Element Model for Thermomagnetic Generators Based on Magnetic SMA Films

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1234
Author(s):  
Joel Joseph ◽  
Makoto Ohtsuka ◽  
Hiroyuki Miki ◽  
Manfred Kohl

This paper presents a lumped element model (LEM) to describe the coupled dynamic properties of thermomagnetic generators (TMGs) based on magnetic shape memory alloy (MSMA) films. The TMG generators make use of the concept of resonant self-actuation of a freely movable cantilever, caused by a large abrupt temperature-dependent change of magnetization and rapid heat transfer inherent to the MSMA films. The LEM is validated for the case of a Ni-Mn-Ga film with Curie temperature TC of 375 K. For a heat source temperature of 443 K, the maximum power generated is 3.1 µW corresponding to a power density with respect to the active material’s volume of 80 mW/cm3. Corresponding LEM simulations allow for a detailed study of the time-resolved temperature change of the MSMA film, the change of magnetic field at the position of the film and of the corresponding film magnetization. Resonant self-actuation is observed at 114 Hz, while rapid temperature changes of about 10 K occur within 1 ms during mechanical contact between heat source and Ni-Mn-Ga film. The LEM is used to estimate the effect of decreasing TC on the lower limit of heat source temperature in order to predict possible routes towards waste heat recovery near room temperature.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6648
Author(s):  
Young-Min Kim ◽  
Young-Duk Lee ◽  
Kook-Young Ahn

The supercritical carbon dioxide (S-CO2) power cycle is a promising development for waste heat recovery (WHR) due to its high efficiency despite its simplicity and compactness compared with a steam bottoming cycle. A simple recuperated S-CO2 power cycle cannot fully utilize the waste heat due to the trade-off between the heat recovery and thermal efficiency of the cycle. A split cycle in which the working fluid is preheated by the recuperator and the heat source separately can be used to maximize the power output from a given waste heat source. In this study, the operating conditions of split S-CO2 power cycles for waste heat recovery from a gas turbine and an engine were studied to accommodate the temperature variation of the heat sink and the waste heat source. The results show that it is vital to increase the low pressure of the cycle along with a corresponding increase in the cooling temperature to maintain the low-compression work near the critical point. The net power decreases by 6 to 9% for every 5 °C rise in the cooling temperature from 20 to 50 °C due to the decrease in heat recovery and thermal efficiency of the cycle. The effect of the heat-source temperature on the optimal low-pressure side was negligible, and the optimal high pressure of the cycle increased with an increase in the heat-source temperature. As the heat-source temperature increased in steps of 50 °C from 300 to 400 °C, the system efficiency increased by approximately 2% (absolute efficiency), and the net power significantly increased by 30 to 40%.


2020 ◽  
pp. 1-27
Author(s):  
Ahmad K. Sleiti ◽  
Wahib Al-Ammari ◽  
Mohammed Al-Khawaja

Abstract Refrigerants of the conventional cooling systems contribute to global warming and ozone depletion significantly, therefore it is necessary to develop new cooling systems that use renewable energy resources and waste heat to perform the cooling function with eco-friendly working fluids. To address this, the present study introduces and analyzes a novel regenerative thermo-mechanical refrigeration system that can be powered by renewable heat sources (solar, geothermal, or waste heat). The system consists of a novel expander-compressor unit (ECU) integrated with a vapor compression refrigeration system. The integrated system operates at the higher-performance supercritical conditions of the working fluids as opposed to the lower-performance subcritical conditions. The performance of the system is evaluated based on several indicators including the power loop efficiency, the coefficient of performance (COP) of the cooling loop, and the expander-compressor diameters. Several working fluids were selected and compared for their suitability based on their performance and environmental effects. It was found that for heat source temperature below 100 °C, adding the regenerator to the system has no benefit. However, the regenerator increases the power efficiency by about 1 % for a heat source temperature above 130 °C. This was achieved with a very small size regenerator (Dr = 6.5 mm, Lr = 142 mm). Results show that there is a trade-off between high-performance fluids and their environmental effects. Using R32 as a working fluid at heat source temperature Th=150 °C and cold temperature Tc1=40 °C, the system produces a cooling capacity of 1 kW with power efficiency of 10.23 %, expander diameter of 53.12 mm, and compressor diameter of 75.4mm.


2011 ◽  
Vol 474-476 ◽  
pp. 2335-2340 ◽  
Author(s):  
Han Dong Wang

In order to utilize solar energy and industry waste heat to reduce electricity consumption in heating, ventilating, air conditioning and refrigerating (HVAC&R) engineering, the authors developed a new style diffusion-absorption refrigeration (DAR) system. It can be driven by heat sources with low temperature, and in which LiNO3-NH3-He is used as working fluids and a spray absorber with a solution cooler is designed to enhance the mass and heat transfer, respectively. What presented here is about the modified experiment set and the latest experiment results. The experiments show that the system can start to operate when the temperature of heat source (hot water) reaches to 60°C and it can meet the temperature requirement of air conditioning when heat source temperature varies in the range of 70~83°C. The evaporating temperature varies from 10~-13°C at various absorbing temperatures when heat source temperature reaches the level of 83~95°C. The corresponding refrigeration capacity and coefficient of performance (COP) varies in the range of 1.90~4.22kW and 0.177~0.332, respectively. It is also found that the evaporating temperature, refrigeration capacity and COP are so sensitive to absorbing temperature rather than generating or condensing temperature that the absorbing temperature can be used to regulate the working condition and parameters of the DAR system, e.g. by means of modulating the flow rate of cooling water circulating in the solution cooler equipped to the spray absorber. Thus, in the fields with plenty of solar energy or industry waste heat, the new style DAR system can be considered as an ideal candidate for utilizing low-grade energy, saving energy and reducing emission.


2015 ◽  
Vol 62 (2) ◽  
pp. 133-139
Author(s):  
T Sultana ◽  
MZI Khan

Now a days, adsorption heat pumps receive considerable attention as they are energy savers and environmentally benign. Silica gel/water based adsorption cycles have a distinct advantage in their ability to be driven by heat of near-ambient temperature so that waste heat below 100 °C can be recovered. One interesting feature of refrigeration cycles driven by waste heat is that they do not use primary energy as driving source. In the present paper, an analytic investigation of a two-stage adsorption refrigeration chiller using re-heat with different mass allocation was performed to determine the influence of the thermal conductance of evaporator as well as the heat source temperature on the chiller performance. Result shows that cycle performance is strongly influenced by large thermal conductance values of the evaporator. Besides it is observed that the chilled water outlet has lower value for comparatively higher value of heat source temperature. DOI: http://dx.doi.org/10.3329/dujs.v62i2.21978 Dhaka Univ. J. Sci. 62(2): 133-139, 2014 (July)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmad H. Bokhari ◽  
Martin Berggren ◽  
Daniel Noreland ◽  
Eddie Wadbro

AbstractA subwoofer generates the lowest frequency range in loudspeaker systems. Subwoofers are used in audio systems for live concerts, movie theatres, home theatres, gaming consoles, cars, etc. During the last decades, numerical simulations have emerged as a cost- and time-efficient complement to traditional experiments in the design process of different products. The aim of this study is to reduce the computational time of simulating the average response for a given subwoofer design. To this end, we propose a hybrid 2D–3D model that reduces the computational time significantly compared to a full 3D model. The hybrid model describes the interaction between different subwoofer components as interacting modules whose acoustic properties can partly be pre-computed. This allows us to efficiently compute the performance of different subwoofer design layouts. The results of the hybrid model are validated against both a lumped element model and a full 3D model over a frequency band of interest. The hybrid model is found to be both accurate and computationally efficient.


2019 ◽  
Vol 65 (253) ◽  
pp. 701-716 ◽  
Author(s):  
D. I. Benn ◽  
A. C. Fowler ◽  
I. Hewitt ◽  
H. Sevestre

AbstractWe present the first general theory of glacier surging that includes both temperate and polythermal glacier surges, based on coupled mass and enthalpy budgets. Enthalpy (in the form of thermal energy and water) is gained at the glacier bed from geothermal heating plus frictional heating (expenditure of potential energy) as a consequence of ice flow. Enthalpy losses occur by conduction and loss of meltwater from the system. Because enthalpy directly impacts flow speeds, mass and enthalpy budgets must simultaneously balance if a glacier is to maintain a steady flow. If not, glaciers undergo out-of-phase mass and enthalpy cycles, manifest as quiescent and surge phases. We illustrate the theory using a lumped element model, which parameterizes key thermodynamic and hydrological processes, including surface-to-bed drainage and distributed and channelized drainage systems. Model output exhibits many of the observed characteristics of polythermal and temperate glacier surges, including the association of surging behaviour with particular combinations of climate (precipitation, temperature), geometry (length, slope) and bed properties (hydraulic conductivity). Enthalpy balance theory explains a broad spectrum of observed surging behaviour in a single framework, and offers an answer to the wider question of why the majority of glaciers do not surge.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


2006 ◽  
Vol 326-328 ◽  
pp. 1275-1278 ◽  
Author(s):  
Chang Oh Kim ◽  
Jin Heung Kim ◽  
Nak Kyu Chung

This study aims to find out cooling characteristics of TMA 25wt%-water clathrate compound with ethanol such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at -6, -7 and -8, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as 5.1 and 5.0, 3.8 according to cooling source temperature in case that 0.5wt% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is 0.9 and minimum supercooling is 0.8, 0.7 according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is 3.013~3.048 kJ/kgK according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol.


Sign in / Sign up

Export Citation Format

Share Document