scholarly journals Energy Consumption and Environment Performance Analysis of Induction-Healed Asphalt Pavement by Life Cycle Assessment (LCA)

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1244
Author(s):  
Qi Jiang ◽  
Fusong Wang ◽  
Quantao Liu ◽  
Jun Xie ◽  
Shaopeng Wu

In this paper, the sustainability of induced healing asphalt pavement is demonstrated by comparing the impact of asphalt pavement maintained by induced healing asphalt pavement technology and traditional maintenance methods (such as milling and overlaying). The functional unit selected is a 1-km lane with an analysis period of 20 years. The stages to be considered are material manufacturing, paving, maintenance, milling and demolition. Two case studies were analyzed to assess the impact of different technologies on the energy consumption and environmental performance of each maintenance alternative. By comparing the energy consumption and environmental emissions of the whole life cycle of pavement under the two technical conditions, the results show that the total energy consumption of traditional asphalt pavement is about 2.5 times that of induction-healed asphalt pavement, and the total greenhouse gas (GHG) emissions of the former are twice as much as that of the latter.

2015 ◽  
Vol 814 ◽  
pp. 447-457 ◽  
Author(s):  
Wan Xia Shen ◽  
Bo Zhang ◽  
Yu Feng Zhang ◽  
Xue Chao Wang ◽  
Qiang Lu ◽  
...  

Based on producing and manufacturing process of key components, a light-duty battery electric passenger vehicle was selected as a research object, and the energy consumption and environmental emissions from raw materials production, electric vehicle manufacture and operation process in depth were analyzed. The results showed that, the energy consumption for the whole life cycle of EV was 438GJ. The production and operation process of EV accounted for 18.5% and 81.5%, respectively. The GHGs (including CO2, CH4and N2O) emission was 39.3tCO2-eq. The production and operation processed of EV account for 17% and 83%, respectively. Five kinds of other gases emissions from the production and operation process of EV were as follows: 305kg SOx, 206kg NOx, 133kg PM, 69.3kg CO, and 14.6kg NMVOCs. The production and manufacture of key parts and components account for the largest share of the total energy consumption and environmental emissions. Battery system is in the next place, while motor system is least.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 174 ◽  
Author(s):  
Serik Tokbolat ◽  
Farnush Nazipov ◽  
Jong R. Kim ◽  
Ferhat Karaca

The role of buildings in the context of addressing the consequences of climate change and the energy deficit is becoming increasingly important due to their share in the overall amount of green house gas (GHG) emissions and rapidly growing domestic energy consumption worldwide. Adherence to a sustainability agenda requires ever-increasing attention to all stages of a building′s life, as such approach allows for the consideration of environmental impacts of a building, from design, through construction stages, until the final phase of a building′s life—demolition. A life cycle assessment (LCA) is one of the most recognized and adopted models for the evaluation of the environmental performance of materials and processes. This paper aims to perform an LCA of four different types of residential buildings in Nur-Sultan, Kazakhstan. The assessment primarily considered embodied energy and GHG emissions as key assessment indicators. Findings suggest that the operational stage contributed to more than half of the GHG emissions in all the cases. The results of the study indicate that there is a dependence between the comfort levels and the impact of the buildings on the environment. The higher the comfort levels, the higher the impacts in terms of the CO2 equivalent. This conclusion is most likely to be related to the fact that the higher the comfort level, the higher the environmental cost of the materials. A similar correlation can be observed in the case of comparing building comfort levels and life-cycle impacts per user. There are fewer occupants per square meter as the comfort level increases. Furthermore, the obtained results suggest potential ways of reducing the overall environmental impact of the building envelope components.


Author(s):  
Bo Zhang ◽  
Qiang Lu ◽  
Zheng Shen ◽  
Yaokun Yang ◽  
Yunlin Liang

Based on the localized data of environmental load, this study has established the life cycle assessment (LCA) model of battery electric passenger vehicle (BEPV) that be produced and used in China, and has evaluated the energy consumption and greenhouse gases (GHGs) emission during vehicle production and operation. The results show that the total energy consumption and GHG emissions are 438GJ and 37,100kg (in terms of CO2 equivalent) respectively. The share of GHG emissions in total emissions at the production stage is 24.6%, and 75.4% GHG emissions are contributed by the operational stage. The main source of energy consumption and GHG emissions at vehicle production stage is the extraction and processing of raw materials. The GHG emissions of raw materials production accounts for 75.0% in the GHG emissions of vehicle production and 18.0% in the GHG emissions of full life cycle. The scenario analysis shows that the application of recyclable materials, power grid GHG emission rates and vehicle energy consumption rates have significant influence on the carbon emissions in the life cycle of vehicle. Replacing primary metals with recycled metals can reduce GHG emissions of vehicle production by about 7.3%, and total GHG emissions can be reduced by about 1.8%. For every 1% decrease in GHG emissions per unit of electricity, the GHG emissions of operation stage will decrease by about 0.9%; for every 1.0% decrease in vehicle energy consumption rate, the total GHG emissions decrease by about 0.8%. Therefore, developing clean energy, reducing the proportion of coal power, optimizing the production of raw materials and increasing the application of recyclable materials are effective ways to improve the environmental performance of BEPV.


2011 ◽  
Vol 354-355 ◽  
pp. 256-265
Author(s):  
Sampatrao Manjare ◽  
Rajendra Mohite

Abstract Diammonium Phosphate (DAP) is an important crop nutrient for plants and its use is increasing day by day with increase in population. Life cycle assessment (LCA) is an important tool in the evaluation of the environmental performance of the product/ system throughout the life cycle. In this paper, LCA has been used to evaluate the performance of the Diammonium Phosphate (DAP) fertilizer production. The system investigated includes DAP production process. The quantification of environmental emissions, material and energy usage are quantified and environmental effects are assessed. The impact categories most affected by the DAP production, are respiratory inorganics and terrestrial acid/nitrification. Interpretations have been made and recommendations are given for operational improvements in DAP production


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Peyman Babashamsi ◽  
Nur Izzi Md Yusoff ◽  
Halil Ceylan ◽  
Nor Ghani Md Nor

As quality aggregate sources are depleted, there is a growing importance given to incorporating recycled co-products and waste materials (RCWMs) in new and rehabilitated pavements. An ideal goal would be using recycled materials to create long-lived, well-performing pavement and then being able to use those materials again at the end of their life to create new pavement, thereby effectively achieving a zero-waste highway construction stream. This would not only produce distinct cost advantages, but it would also significantly reduce energy consumption and greenhouse gas (GHG) emissions and eliminate the need for landfill disposal. Drawing from ISO standards and practices, this article reviews the recycling methods and definitions associated with the End-of-Life (EOL) phase and present various EOL considerations for asphalt pavements and the associated challenges to quantify EOL contribution in the pavement life cycle.


2020 ◽  
Vol 12 (7) ◽  
pp. 2609 ◽  
Author(s):  
He Wang ◽  
Yinqi Zhang ◽  
Weijun Gao ◽  
Soichiro Kuroki

Global greenhouse gas (GHG) emissions from the construction industry continue to increase at an annual rate of 1.5%. It is particularly important to understand the characteristics of the building life cycle to reduce its environmental impact. This paper aims to assess the environmental impact of prefabricated buildings and traditional cast-in-situ buildings over the building life cycle using a hybrid model. A case study of a building with a 40% assembly rate in Japan was employed for evaluation. It concluded that the total energy consumption, and carbon emissions of the prefabricated building was 7.54%, and 7.17%, respectively, less than that of the traditional cast-in-situ building throughout the whole life cycle. The carbon emissions reduction in the operation phase reached a peak of 4.05 kg CO2/year∙m2. The prefabricated building was found to cost less than the traditional cast-in-situ building, reducing the price per square meter by 10.62%. The prefabricated building has advantages in terms of reducing global warming, acid rain, and health damage by 15% reduction. With the addition of the assembly rate, the carbon emissions and cost dropped, bottoming out when the assembly rate was 60%. After that, an upward trend was shown with the assembly rate increasing. Additionally, this study outlined that the prefabricated pile foundations is not applicable due to its high construction cost and environmental impact.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1181
Author(s):  
Mitar Jocanovic ◽  
Boris Agarski ◽  
Velibor Karanovic ◽  
Marko Orosnjak ◽  
Milana Ilic Micunovic ◽  
...  

In this multidisciplinary research, an LCA/LCC model is developed for assessing the costs, energy consumption, and greenhouse gas (GHG) emissions during the pump unit lifecycles in drinking water distribution systems (WDS). The presented methodology includes the pump, motor, and variable frequency drive monitoring as a system (pump unit), through their life-cycle stages: the manufacturing stage, the exploitation stage, and the disposal stage at the end of their life-cycle. The developed model also analyses other processes such as the maintenance, testing, and reconstruction of the pump unit. Demonstration of the presented methodology was performed using the pump unit of an operating WDS system in different scenarios, in order to illustrate the proper application of this model. The obtained results show that the application of pump units is justified in terms of energy consumption. The results also show that 93%–94% of the consumed energy and the LCC costs are related to the pump operating costs, while the rest are related to auxiliary operations. The findings show that various countries can have considerably different prices of electrical energy and different GHG emissions that depend on the source of electric energy. The implemented model incorporates some of the symmetries that are commonly found in the mathematical models of water distribution systems. Finally, the results of pump unit exploitation within the WDS have been used to show the impact of such plants on different levels of energy consumption, GHG emissions, and LCC production.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2363
Author(s):  
Mihaela Simionescu ◽  
Carmen Beatrice Păuna ◽  
Mihaela-Daniela Vornicescu Niculescu

Considering the necessity of achieving economic development by keeping the quality of the environment, the aim of this paper is to study the impact of economic growth on GHG emissions in a sample of Central and Eastern European (CEE) countries (V4 countries, Bulgaria and Romania) in the period of 1996–2019. In the context of dynamic ARDL panel and environmental Kuznets curve (EKC), the relationship between GHG and GDP is N-shaped. A U-shaped relationship was obtained in the renewable Kuznets curve (RKC). Energy consumption, domestic credit to the private sector, and labor productivity contribute to pollution, while renewable energy consumption reduces the GHG emissions. However, more efforts are required for promoting renewable energy in the analyzed countries.


2014 ◽  
Vol 953-954 ◽  
pp. 890-895
Author(s):  
Hui Min Li ◽  
Cun Bin Li ◽  
Zhan Xin Ma

In recent years, with the rapid economic growth, the demand on the amount of energy in China is increasing. So the problem of how to improve the energy utilization efficiency and save energy consumption has to be tackled. The traditional CCR model and BCC model used in the study of provincial energy efficiency do not take the impact of technological progress into consideration. Therefore, the paper uses the generalized DEA method to research the energy utilization efficiency of China’s 29 provinces, that is, to evaluate and analyze the energy utilization efficiency by selecting the capital stock, employment and total energy consumption of China’s provinces as input factors and GDP, per capital GDP as output factors, and then draw tables showing each province’s change of average annual overall efficiency and the pure technology changes, and finally analyze the regularities underlying these changes.


Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116588 ◽  
Author(s):  
Guoxuan Li ◽  
Peizhe Cui ◽  
Yinglong Wang ◽  
Zhiqiang Liu ◽  
Zhaoyou Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document