scholarly journals Effect of Cryogenic Grinding on Fatigue Life of Additively Manufactured Maraging Steel

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1245
Author(s):  
Arunachalam S. S. Balan ◽  
Kannan Chidambaram ◽  
Arun V. Kumar ◽  
Hariharan Krishnaswamy ◽  
Danil Yurievich Pimenov ◽  
...  

Additive manufacturing (AM) is replacing conventional manufacturing techniques due to its ability to manufacture complex structures with near-net shape and reduced material wastage. However, the poor surface integrity of the AM parts deteriorates the service life of the components. The AM parts should be subjected to post-processing treatment for improving surface integrity and fatigue life. In this research, maraging steel is printed using direct metal laser sintering (DMLS) process and the influence of grinding on the fatigue life of this additively manufactured material was investigated. For this purpose, the grinding experiments were performed under two different grinding environments such as dry and cryogenic conditions using a cubic boron nitride (CBN) grinding wheel. The results revealed that surface roughness could be reduced by about 87% under cryogenic condition over dry grinding. The fatigue tests carried out on the additive manufactured materials exposed a substantial increase of about 170% in their fatigue life when subjected to cryogenic grinding.

2009 ◽  
Vol 407-408 ◽  
pp. 560-564
Author(s):  
Ya Li Hou ◽  
Chang He Li ◽  
Yu Cheng Ding

The grinding hardening is a new surface heat treatment technology using grinding heat in which induce martensitic phase transformation in the surface layers of annealed or tempered steels to achieve surface strengthening processes and integrate the surface hardening process with the grinding precision machining. In the paper, a thermal model to describe this process has been presented from the thermal partition modeling and has been used to predict subsurface time–temperature profiles in the dry cylindrical grinding crankshaft using cubic boron nitride (CBN) wheels. The grinding hardening experiment was carried out in precision cylindrical grinder M1420E, using work-piece material 42CrMo4 and CBN grinding wheel under dry grinding condition. The experimental results showed the theoretical model is agreement with experimental results and the model can well forecast the grinding hardening depths.


2021 ◽  
Vol 11 (3) ◽  
pp. 191-203
Author(s):  
Hung Trong Phi ◽  
Got Van Hoang ◽  
Trung Kien Nguyen ◽  
Son Hoanh Truong

The experiments of the surface grinding of Ti-6Al-4V grade 5 alloy (Ti-64) with a resin-bonded cubic Boron Nitride (cBN) grinding wheel are performed in this research to estimate the influence of cutting parameters named workpiece infeed speed, Depth of Cut (DOC), cooling condition on the grinding force, force ratio, and specific energy. A finite element simulation model of single-grain grinding of Ti-64 is also implemented in order to predict the values of grinding forces and temperature. The experimental results show that an increase of workpiece infeed speed creates higher intensified cutting forces than the DOC. The grinding experiments under wet conditions present slightly lower tangential forces, force ratio, and specific energy than those in dry grinding. The simulation outcomes exhibit that the relative deviation of simulated and experimental forces is in the range of 1-15%. The increase in feed rate considerably reduces grinding temperature, while enhancement of DOC elevates the heat generation in the cutting zone.


2017 ◽  
Vol 8 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Kankan Ji ◽  
Xingquan Zhang ◽  
Shubao Yang ◽  
Liping Shi ◽  
Shiyi Wang ◽  
...  

Purpose The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared. Design/methodology/approach In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer. Findings When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm. Originality/value In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.


2021 ◽  
Vol 60 (1) ◽  
pp. 691-701
Author(s):  
Zhibo Yang ◽  
Wang Sun ◽  
Dongyu He ◽  
Daocheng Han ◽  
Wei Wang ◽  
...  

Abstract In this article, the laser-assisted ultrasonic vibration dressing technique was applied to the cubic boron nitride (CBN) grinding wheel to study the effect of various process parameters (namely, laser power, dressing depth, feed rate, and grinding wheel speed) on the grinding force, surface quality, and morphological evolution of CBN abrasive particles. The results showed that abrasive particles’ morphology mainly undergoes micro-crushing, local crushing, large-area crushing, macro-crushing, and other morphological changes. The dressing force can be effectively reduced by controlling the dressing process parameters. Besides, grinding tests are performed on the grinding wheel after dressing to reveal specimens’ surface quality. Excellent grinding characteristics and grinding quality of the grinding wheel were obtained by the proposed technique with the optimized process parameters.


2013 ◽  
Vol 303-306 ◽  
pp. 2481-2484
Author(s):  
Zhi Jian He ◽  
Xu Kun Liang

A set of precision vertical grinding experiment on WC-CO cemented tungsten carbide materials was carried out using cubic boron nitride (CBN) grinding wheel. Different grinding parameters such as rotation speeds of workpiece, feed rates and grinding depths were employed during precision vertical grinding. Surface roughness was measured for studying the grinding charateristics of WC-CO cemented tungsten carbide in this removal mode. Optimal grinding parameters were obtained by changing the process parameters. The research results have an important significance to improve grinding quality and efficiency for precision grinding cemented tungsten carbide materials.


2015 ◽  
Vol 764-765 ◽  
pp. 18-22
Author(s):  
Ming Yi Tsai ◽  
Alan Chen ◽  
Hung Jui Chang

The wear behaviors of micrographite particles impregnating a cubic boron nitride (CBN) abrasive matrix using resin bonding was presented. CBN composite specimens containing 0.1, 1, and 5 wt% graphite and 50, 75, and 100 CBN concentrations were prepared by compression molding. Three dressing materials—copper, SiC, and Al2O3—were prepared to dress the CBN composite specimens. A carrier was designed and manufactured have a shape similar to that of a grinding wheel in order to hold the CBN composite specimens, which was then attached to the spindle of the grinder to carry out the grinding processes. The worn surfaces of the CBN composites were examined using scanning electron microscopy. Also, the surface characteristics and wear rate of the CBN composite specimens, the material removal rate, and the surface roughness of the SKD11 steel were investigated under dry grinding conditions. The experimental results indicated that there was considerable improvement in the process performance of the graphite-impregnated CBN structure.


2004 ◽  
Vol 471-472 ◽  
pp. 11-15 ◽  
Author(s):  
Wen Feng Ding ◽  
Jiu Hua Xu ◽  
J.B. Lu ◽  
Yu Can Fu ◽  
Bing Xiao ◽  
...  

In this paper, the disadvantages of the current CBN (Cubic Boron Nitride) grinding wheels were firstly introduced briefly, for indicating that it was very urgent and important to develop new kinds of grinding wheels with excellent performance to replace the conventional wheels. Then high temperature brazing experiments of monolayer CBN wheels with Ag-Cu-Ti filler alloy were carried out. The result shows that the filler alloy has good wetting capability towards CBN grits. The results of scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis show that, just because during brazing titanium atoms in filler alloys segregated preferentially to the surface of the CBN to form Ti-nitride or Ti-boride layer by reaction between titanium atoms and nitride and boron atoms at elevated temperature, strong chemical joining was formed in the interface between CBN grits and filler alloys. Finally, the contrastive grinding experiments were performed between the monolayer brazed CBN grinding wheels and the electroplated ones. The results show that the brazed wheels have more excellent performance than the latter.


2021 ◽  
Author(s):  
Guang Li ◽  
Guoxing Liang ◽  
Xingquan Shen ◽  
Ming Lv ◽  
Donggang Liu ◽  
...  

Abstract The wear behavior of a single-layer electroplated cubic boron nitride (cBN) grinding wheel was investigated in creep feed profile grinding Inconel 718 narrow-deep-groove with a width of 2 mm. In this paper, the protrusion height of cBN grits on the side edge of the grinding wheel was measured by three-dimensional optical profiler, and a scanning electron microscope was used to detect the topography of worn cBN grit and the nickel bonding layer. The investigation results indicated that the steady wear stage of the grinding wheel shared more than 84.6% of the wheel lifespan, and the machining precision of the grinding wheel was kept at a high level. The fracture mode of the cBN grit was proven to be cleavage. The source of the cleavage cracks was observed on the surface of wear flat or the side surface of the cBN grit. The holding strength of cBN grit could be weakened due to the joint surface breakage, the displacement of grit, or the cracks of the nickel bonding layer. The transition layer was contributed to the decrease of the bonding strength. Severe macro fractures and the concentration of pulled out grits were observed on the transition edge and the inner area of the side edge, separately. This study provides a deep understanding of the wear mechanism of a single-layer electroplated cBN grinding wheel.


Author(s):  
Tianyu Yu ◽  
Ashraf F. Bastawros ◽  
Abhijit Chandra

The wear of Cubic Boron Nitride (CBN) grinding wheel directly affects the workpiece surface integrity and tolerances. This paper summarizes a combined experimental-modeling framework for CBN grinding wheel life expectancy utilized in both cylindrical and surface grinding. The presented fatigue type model is based on grit pullout mechanism and the associated state of damage percolation. The unique grit-workpiece interaction process leads to a non-uniform spatial distribution of the grit wear. The life expectancy model can be described as a function of the process parameters, grinding wheel geometry and topology, workpiece material properties, etc. The developed modeling framework will greatly enhance the understanding of electroplated CBN grinding wheel wear mechanism.


Sign in / Sign up

Export Citation Format

Share Document