scholarly journals Polymer-Bitumen Interaction: A Correlation Study with Six Different Bitumens to Investigate the Influence of SARA Fractions on the Phase Stability, Swelling, and Thermo-Rheological Properties of SBS-PmB

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1273
Author(s):  
Martin Wieser ◽  
Andreas Schaur ◽  
Seraphin Hubert Unterberger

The aim of this work is to determine the influence of the bitumen chemistry on the rheological performance of bitumen and polymer modified bitumen (PmB), as well as the polymer distribution and storage stability. Six different bitumens and their 5 wt.% SBS mixtures are considered in this work. The bitumen composition was determined by SARA fractioning, which was then correlated with the glass transition temperature, complex modulus |G*|, and phase angle, which were obtained by parallel-plate dynamic shear rheology in the temperature range of −25 to 65 °C. The polymer distribution, which was derived from fluorescence microscopy images and the storage stability (determined by tube test) also correlated with the SARA fractions. It was found that the saturates decrease |G*| and Tg and increase the phase angle in crude bitumen, while the asphaltenes increase |G*| and the phase angle. For PmB, the amount of swelling was determined by the saturate content of bitumen. The glass transition temperature of PmBs increases for low saturate and decreases for high saturate contents. |G*| and the phase angle of PmBs correlates with the saturate content, with a varying influence depending on a high or low saturate content and the temperature range due to saturate depletion in the bitumen-rich phase and the varying vol% polymer-rich phase. The aromatic and resin fractions show no correlation in the considered bitumens and PmBs.

2018 ◽  
Vol 26 (2) ◽  
pp. 169-175
Author(s):  
Yaoqi Shi ◽  
Liang Wen ◽  
Zhong Xin

The crystallization activation energy (Δ E) of a polymer comprises the nucleation activation energy Δ F and the transport activation energy Δ E*. In this paper, the Δ E of poly (L-lactic acid) (PLLA) nucleated with nucleating agent p- tert-butylcalix[8]arene (tBC8) was calculated. The results showed that the Δ E of nucleated PLLA was 165.97 kJ/mol, which is higher than that of pure PLLA. The reason why Δ E of PLLA increased when incorporating nucleating agent was studied. The increment of glass transition temperature ( Tg) for nucleated PLLA revealed that the polymer chain mobility was restricted by tBC8, which was considered as the reason for the increase of Δ E*. Further, polyethylene glycol (PEG) was added to improve the chain mobility, thus eliminated the variation of the transport activation energy Δ E* caused by tBC8. Then the effect of the increment of crystallization temperature range on the increase of Δ F was also taken into consideration. It was concluded that both decreasing the mobility of chain segments and increasing the crystallization temperature range caused an increase of Δ E for PLLA/tBC8.


1989 ◽  
Vol 68 (9) ◽  
pp. 1313-1315 ◽  
Author(s):  
C.W. Fairhurst ◽  
D.T. Hashinger ◽  
S.W. Twiggs

Porcelain-fused-to-metal restorations are fired several hundred degrees above the glass-transition temperature and cooled rapidly through the glass-transition temperature range. Thermal expansion data from room temperature to above the glass-transition temperature range are important for the thermal expansion of the porcelain to be matched to the alloy. The effect of heating rate during measurement of thermal expansion was determined for NBS SRM 710 glass and four commercial opaque and body porcelain products. Thermal expansion data were obtained at heating rates of from 3 to 30°C/min after the porcelain was cooled at the same rate. By use of the Moynihan equation (where Tg systematically increases in temperature with an increase in cooling/heating rate), the glass-transition temperatures (Tg) derived from these data were shown to be related to the heating rate.


1989 ◽  
Vol 68 (9) ◽  
pp. 1316-1318 ◽  
Author(s):  
S.W. Twiggs ◽  
J.R. Searle ◽  
R.D. Ringle ◽  
C.W. Fairhurst

Herein we describe a dilatometer that consists of a low-mass infrared furnace for rapid heating or cooling, an optical pyrometer, and a laser interferometer. The dilatometer facilitates observations of thermal expansion at rates comparable with those in dental laboratory practice over the temperature range necessary for comparison of thermal expansion of dental porcelain and alloy. Examples of thermal expansion data obtained at a 600°Clmin heating rate on NIST SRM 710 glass and dental porcelain are reported. To a limited extent, thermal expansion data above the glass-transition temperature range of dental porcelain were obtained. A shift of the glass-transition temperature range to higher temperatures was observed for both materials, compared with data obtained at 20°Clmin.


Sign in / Sign up

Export Citation Format

Share Document