scholarly journals Material Selection and Characterization for a Novel Frame-Integrated Curtain Wall

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1896
Author(s):  
Mercedes Gargallo ◽  
Belarmino Cordero ◽  
Alfonso Garcia-Santos

Curtain walls are the façade of choice in high-rise buildings and an indispensable element of architecture for a contemporary city. In conventional curtain walls, the glass panels are simply supported by the metal framing which transfers any imposed load to the building structure. The absence of composite action between glass and metal results in deep frames, protruding to the inside, occupying valuable space and causing visual disruption. In response to the limited performance of conventional systems, an innovative frame-integrated unitized curtain wall is proposed to reduce structural depth to one fifth (80%) allowing an inside flush finish and gaining nettable space. The novel curtain wall is achieved by bonding a pultruded glass fiber reinforced polymer (GFRP) frame to the glass producing a composite insulated glass unit (IGU). This paper selects the candidate frame and adhesive materials performing mechanical tests on GFRP pultrusions to characterize strength and elasticity and on GFRP-glass connections to identify failure module and strength. The material test results are used in a computer-based numerical model of a GFRP-glass composite unitized panel to predict the structural performance when subjected to realistic wind loads. The results confirm the reduction to one fifth is possible since the allowable deflections are within limits. It also indicates that the GFRP areas adjacent to the support might require reinforcing to reduce shear stresses.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tongtong Zhang ◽  
Di Cao

The poor fire resistance characteristic of super high-rise curtain wall makes the curtain wall design one of the main approaches to improve its capacity for prevention and control over fire and smoke spread. The propagation of smoke leads to the increase in the temperature of the curtain wall on the upper and lower floors of the fire floor and consequently leads to glass fracture and other serious consequences. Current codes have control over fire resistance performance and size of fire partition materials but do not include requirements on the position of curtain walls on floors. By changing the position of fire partition in curtain walls, the paper carries out three comparative simulation experiments on two forms of fire partition: spandrel and fire prevention cornice. Besides, PyroSim is used to calculate the comparative simulation of fire and smoke spread and obtain the data on temperature variation nephogram and monitoring points in the center line of glass curtain walls during different fire scenarios, so as to discuss the influence of different positions of spandrels and fire canopy on fire hazard and smoke. This study finds out the following: fire canopy can better prevent the longitudinal spread of fire smoke than spandrels. The fire canopy above spandrels can reduce the flue-gas temperature. The higher the spandrels above floors, the faster the temperature of the central lines of glass curtain walls above fire floors reduced. However, the higher the spandrels above floors, the more uneven the distributions of high-temperature regions and low-temperature regions, thus leading to the increase in horizontal temperature differences of glass panels. This research conclusion can be taken as a reference for fire protection design of super high-rise glass curtain wall.


2012 ◽  
Vol 594-597 ◽  
pp. 921-924
Author(s):  
Ruo Fei Liu ◽  
Cheng Wei Huang ◽  
Zhi Peng Huo

The point-supported cable truss curtain wall is widely applied in today's high-rise construction structural design. The wind load is the main loads which are bore by Point supported glass curtain wall structure. When the curtain wall glass panels are subject to wind load, the panel will transform form surface loads to point load by spider claws passed to the supporting structure. This paper adopts the method of time domain and ANSYS software to analyse point-supported glass curtain wall cable truss structure of wind-induced vibration response.


2005 ◽  
Author(s):  
Xiang Li ◽  
Zhong Ping Fang ◽  
Ivan Reading ◽  
Liping Zhao ◽  
Siew Loong Chow

2018 ◽  
Vol 8 (12) ◽  
pp. 2398 ◽  
Author(s):  
Shunsuke Nansai ◽  
Keichi Onodera ◽  
Prabakaran Veerajagadheswar ◽  
Mohan Rajesh Elara ◽  
Masami Iwase

Façade cleaning in high-rise buildings has always been considered a hazardous task when carried out by labor forces. Even though numerous studies have focused on the development of glass façade cleaning systems, the available technologies in this domain are limited and their performances are broadly affected by the frames that connect the glass panels. These frames generally act as a barrier for the glass façade cleaning robots to cross over from one glass panel to another, which leads to a performance degradation in terms of area coverage. We present a new class of façade cleaning robot with a biped mechanism that is able overcome these obstacles to maximize its area coverage. The developed robot uses active suction cups to adhere to glass walls and adopts mechanical linkage to navigate the glass surface to perform cleaning. This research addresses the design challenges in realizing the developed robot. Its control system consists of inverse kinematics, a fifth polynomial interpolation, and sequential control. Experiments were conducted in a real scenario, and the results indicate that the developed robot achieves significantly higher coverage performance by overcoming both negative and positive obstacles in a glass panel.


2020 ◽  
Vol 208 ◽  
pp. 109641 ◽  
Author(s):  
Tanya Saroglou ◽  
Theodoros Theodosiou ◽  
Baruch Givoni ◽  
Isaac A. Meir

Author(s):  
Sebastian Geier ◽  
Jan Petersen ◽  
Peter Wierach

Abstract The increasing electrification places great demands on the supply and storage of electrical energy. Beside batteries, supercapacitors are a second storage technology with clear advantages compared to batteries in terms of charging time, energy density and cycle stability. This publication deals with the structurally compliant integration of pouch supercapacitor cells which are developed for integration into fiber-reinforced composites. The energy storage components are designed to transmit mechanical stresses. The aim is to qualify a space structure with integrated supercapacitors for use under space conditions. For a special peak power application, 14 supercapacitors are integrated into the lay-up of a glass fiber-reinforced structure. This structure connects electronic components and is therefore designed load-bearingly. Thermal cycling under high vacuum between −22°C and +67°C shows temperature effects, as result of the temperature dependence of the ion mobility. During the other mechanical tests (sinus vibration, random vibration, pyroshock) and irradiation with a Co60 source the electrical performance keeps at the same level. The structure featuring 14 integrated supercapacitors exhibits a specific capacitance of 1.12 F/g compared to a specific capacitance of 0.35 F/g of a structure using 16 commercial supercapacitors (FastCap EE350). These results demonstrate the great weight- and volume-saving potential of this approach.


Author(s):  
Minshu Zhang ◽  
S. W. Ricky Lee

Interfacial delamination is a long existing problem in the moisture preconditioning process and reflow. The failure is caused by the competition between interfacial strength and hygrothermal stress. Many simulations based on the finite element model have been applied to study the failure mechanism of this phenomenon. However, the difficulty in obtaining material properties of mini-size packages, the lack of experiment investigation of interfacial adhesion and the less-understood moisture analysis will always bring many challenges to simulations. To avoid the above issues, dummy QFN packages were fabricated as the test vehicle for the investigation of the moisture related failure. The major advantage of using dummy packages is that all material properties could be traced and all geometric parameters could be determined without ambiguities. With everything under control, failure modes could be generated within expectation. This would provide a good experiment comparison for future finite element analysis. In this study, several experiment procedures were implemented to establish the relationship between material selection and moisture sensitivity level (MSL) test performance. They were package fabrication, mechanical tests for interfacial adhesion, C-SAM and cross-section inspections. Based on the experimental results, features of the moisture related failure mechanism are presented in this paper.


2016 ◽  
Vol 19 (12) ◽  
pp. 1841-1854 ◽  
Author(s):  
Suwen Chen ◽  
Chen-Guang Zhu ◽  
Guo-Qiang Li ◽  
Yong Lu

The blast resistance of point-supported laminated glass curtain wall has been investigated by means of field blast tests and numerical simulation. Nine site blast tests were carried out, considering two types of glass thickness and six TNT charges ranging from 0.4 to 30 kg. The overpressure and displacement time histories were measured and the failure modes were observed. The overpressure obtained from the measurement panel exhibited a typical pattern of near-field blast with a steep increase followed by a rapid decay within a few milliseconds. The displacement response of the laminated glass panels increased with the increase in the TNT charge almost linearly in the smaller tests (scaled distance ranging 4.5–7 m/kg1/3), which was in line with the increase in the blast impulse in these tests. The failure mode of the point-supported laminated glass panels was featured by tearing off of the polyvinyl butyral layer around the support area, while the glass shards still adhered to the polyvinyl butyral interlayer. Nonlinear dynamic finite element simulation agrees reasonably well with the results from the blast tests. Severe stress concentration has been predicted to occur at the rim of the support holes, leading to initiation of failure at these supports, and this also agrees with the failure mode observed from the blast test. Finally, parametric studies are carried out to investigate the influence of TNT charge weight and the geometric parameters of the panel on the blast response of the glass curtain wall.


Sign in / Sign up

Export Citation Format

Share Document