scholarly journals Influence of Graphite Layer on Electronic Properties of MgO/6H-SiC(0001) Interface

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4189
Author(s):  
R. Lewandków ◽  
P. Mazur ◽  
A. Trembułowicz ◽  
A. Sabik ◽  
R. Wasielewski ◽  
...  

This paper concerns research on magnesium oxide layers in terms of their potential use as a gate material for SiC MOSFET structures. The two basic systems of MgO/SiC(0001) and MgO/graphite/SiC(0001) were deeply investigated in situ under ultrahigh vacuum (UHV). In both cases, the MgO layers were obtained by a reactive evaporation method. Graphite layers terminating the SiC(0001) surface were formed by thermal annealing in UHV. The physicochemical properties of the deposited MgO layers and the systems formed with their participation were determined using X-ray and UV photoelectron spectroscopy (XPS, UPS). The results confirmed the formation of MgO compounds. Energy level diagrams were constructed for both systems. The valence band maximum of MgO layers was embedded deeper on the graphitized surface than on the SiC(0001).

2006 ◽  
Vol 18 (33) ◽  
pp. S2055-S2060 ◽  
Author(s):  
J H Seo ◽  
S J Kang ◽  
C Y Kim ◽  
K-H Yoo ◽  
C N Whang

Author(s):  
Г.В. Бенеманская ◽  
М.Н. Лапушкин ◽  
Д.Е. Марченко ◽  
С.Н. Тимошнев

AbstractElectronic structures of the n -GaN(0001) surface and Cs/ n -GaN(0001) interface with submonolayer Cs coverages were studied for the first time in situ by the photoelectron spectroscopy (PES) method. The spectra of photoemission from the valence band, surface electron states, and core levels (Ga 3 d , Cs 4 d , Cs 5 p ) under synchrotron excitation were measured in a range of photon energies within 50–150 eV. Evolution of the spectrum of surface states near the valence-band maximum was revealed by PES during the adsorption of Cs atoms. A metallic character of the Cs/ n -GaN(0001) nano-interface is demonstrated.


1997 ◽  
Vol 482 ◽  
Author(s):  
R.A. Beach ◽  
E.C. Piquette ◽  
R.W. Grant ◽  
T.C. McGill

AbstractAlthough GaN has been extensively studied for applications in both light emitting and high power devices, the AlN/GaN valence band offset remains an area of contention. Values quoted in the literature range from 0.8eV (Martin)[1] to 1.36eV (Waldrop)[2]. This paper details an investigation of the AIN/AlxGa1-xN band offset as a function of alloy composition. We find an AlN/AlxGa1-xN valence band offset that is nearly linear with Al content and an end point offset for AlN/GaN of 1.36 ± 0.1 eV. Samples were grown using radio frequency plasma assisted molecular beam epitaxy and characterized with x-ray photoelectron spectroscopy(XPS). Core-level and valence-band XPS data for AIN (0001) and AlxGa1-xN (0001) samples were analyzed to determine core-level to valence band maximum (VBM) energy differences. In addition, oxygen contamination effects were tracked in an effort to improve accuracy. Energy separations of core levels were obtained from AlN/AlxGa1-xN(0001) heterojunctions. From this and the core-level to valence band maximum separations of the bulk materials, valence band offsets were calculated.


2D Materials ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 045012
Author(s):  
Dong-Jin Yun ◽  
Ane Etxebarria ◽  
Kyung-Jae Lee ◽  
Minsu Seol ◽  
Hae-ryong Kim ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.


Sign in / Sign up

Export Citation Format

Share Document