scholarly journals Experimental-Analytical Method for Temperature Determination in the Cutting Zone during Orthogonal Turning of GRADE 2 Titanium Alloy

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4328
Author(s):  
Łukasz Ślusarczyk

The paper presents an experimental-analytical method for determination of temperature in the cutting zone during the orthogonal turning of GRADE 2 titanium alloy. A cutting insert with a complex rake geometry was used in the experiments. The experimental part of the method involved orthogonal turning tests during which the cutting forces and the chip forming process were recorded for two different insert rake faces. The analytical part used a relationship between the cutting forces and the temperature in the Primary Shear Zone (PSZ) and the Secondary Shear Zone (SSZ), which are described by the Johnson-Cook (J-C) constitutive model and the chip forming model according to the Oxley’s theory. The temperature in the PSZ and SSZ was determined by finding the minimum difference between the shear flow stress determined in the J-C model and the Oxley’s model. Finally, using the described method, the relationship between the temperature in the PSZ and SSZ and the rake face geometry was determined. In addition, the temperature in the cutting zone was measured during the experimental tests with the use of a thermovision camera. The temperature distribution results determined experimentally with a thermovision camera were compared with the results obtained with the described method.

Author(s):  
M. J. Jackson ◽  
C. H. Hamme ◽  
L. J. Hyde ◽  
G. M. Robinson ◽  
H. Sein ◽  
...  

The advent of nanotechnology has created a demand for precision-machined substrates so that ‘bottom-up’ nanomanufacturing processes can be used to produce functional products at the nanoscale. However, machining processes must be scaled down by an order of magnitude that requires very stable desktop machine tools to produce precision-machined substrates using cutting tools that are rotated at speeds in excess of one million revolutions per minute. Therefore, the mechanics of chip formation at this scale are critical when one considers the effect of chip formation on the generation of surface roughness on the substrate. The tight curl of a machined chip in orthogonal machining appears to be part of the primary shear process. It is also known that transient tight curl occurs before a secondary shear zone develops ahead of the removal of the chip from the cutting zone. However, continuum models predict that curled chips incorporate stresses due to the establishment of a secondary shear zone. A model is presented in terms of the heterogeneous aspects of continuous chip formation, which shows very good agreement with experimental data.


2015 ◽  
Vol 12 (1) ◽  
pp. 31-33 ◽  
Author(s):  
Czán Andrej ◽  
Šajgalík Michal ◽  
Mário Drbúl ◽  
Jozef Holubják ◽  
Jozef Mrázik ◽  
...  

Abstract With the development of automotive, aerospace and biomedical industry, there is higher demand for exotic alloys, often based on titanium or nickel, though they are hard to machine. Therefore, it is essential to thoroughly understand their behavior during machining. Processes in the cutting zone of said materials are due to the complexity and dynamics defined by specific models. These include some deviations, thus it is essential to improve machining observation methodology, so exhibited errors and deviations are minimal or none. Based on the observations, multifunction measuring system has been designed, which allows simultaneous observation of characteristics such as e.g. cutting forces, deformations and thermal spread without uninterrupting machining process.


Author(s):  
M J Jackson

The advent of nanotechnology has created a demand for precision-machined substrates so that ‘bottom-up’ nanomanufacturing processes can be used to produce functional products on the nanoscale. However, machining processes must be scaled down by an order of magnitude that requires very stable desktop machine tools to produce precision-machined substrates. Therefore, the mechanics of chip formation at this scale is critical when the effect is considered of chip formation on the generation of surface roughness on the substrate. The tight curl of a machined chip in orthogonal machining appears to be part of the primary shear process. It is also known that transient tight curl occurs before a secondary shear zone develops ahead of the removal of the chip from the cutting zone. However, continuum models predict that curled chips incorporate stresses due to the establishment of a secondary shear zone. A model is presented in terms of the heterogeneous aspects of continuous chip formation, which shows very good agreement with experimental data.


Author(s):  
René Selbmann ◽  
Markus Baumann ◽  
Mateus Dobecki ◽  
Markus Bergmann ◽  
Verena Kräusel ◽  
...  

AbstractThe residual stress distribution in extruded components and wires after a conventional forming process is frequently unfavourable for subsequent processes, such as bending operations. High tensile residual stresses typically occur near the surface of the wire and thus limit further processability of the material. Additional heat treatment operations or shot peening are often inserted to influence the residual stress distribution in the material after conventional manufacturing. This is time and energy consuming. The research presented in this paper contains an approach to influence the residual stress distribution by modifying the forming process for wire-like applications. The aim of this process is to lower the resulting tensile stress levels near the surface or even to generate compressive stresses. To achieve these residual compressive stresses, special forming elements are integrated in the dies. These modifications in the forming zone have a significant influence on process properties, such as degree of deformation and deformation direction, but typically have no influence on the diameter of the product geometry. In the present paper, the theoretical approach is described, as well as the model set-up, the FE-simulation and the results of the experimental tests. The characterization of the residual stress states in the specimen was carried out by X-ray diffraction using the sin2Ψ method.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 104
Author(s):  
Dong-Hyeop Kim ◽  
Young-Cheol Kim ◽  
Sang-Woo Kim

Airworthiness standards of Korea recommend verifying structural safety by experimental tests and analytical methods, owing to the development of analysis technology. In this study, we propose a methodology to verify the structural safety of aircraft components based on airworthiness requirements using an analytical method. The structural safety and fatigue integrity of a linear actuator for flap control of aircraft was evaluated through numerical analysis. The static and fatigue analyses for the given loads obtained from the multibody dynamics analysis were performed using the finite element method. Subsequently, the margin of safety and vulnerable area were acquired and the feasibility of the structural safety evaluation using the analytical method was confirmed. The proposed numerical analysis method in this study can be adopted as an analytical verification methodology for the airworthiness standards of civilian aircraft in Korea.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2125 ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak

This paper presents selected numerical and experimental results of a skew rolling process for producing balls using helical tools. The study investigates the effect of the billet’s initial temperature on the quality of produced balls and the rolling process itself. In addition, the effect of billet diameter on the quality of produced balls is investigated. Experimental tests were performed using a helical rolling mill available at the Lublin University of Technology. The experiments consisted of rolling 40 mm diameter balls with the use of two helical tools. To determine optimal rolling parameters ensuring the highest quality of produced balls, numerical modelling was performed using the finite element method in the Forge software. The numerical analysis involved the determination of metal flow kinematics, temperature and damage criterion distributions, as well as the measurement of variations in the force parameters. The results demonstrate that the highest quality balls are produced from billet preheated to approximately 1000 °C.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1161
Author(s):  
Hans Jürgen Maier ◽  
Sebastian Herbst ◽  
Berend Denkena ◽  
Marc-André Dittrich ◽  
Florian Schaper ◽  
...  

In the current study, the potential of dry machining of the titanium alloy Ti-6Al-4V with uncoated tungsten carbide solid endmills was explored. It is demonstrated that tribo-oxidation is the dominant wear mechanism, which can be suppressed by milling in an extreme high vacuum adequate (XHV) environment. The latter was realized by using a silane-doped argon atmosphere. In the XHV environment, titanium adhesion on the tool was substantially less pronounced as compared to reference machining experiments conducted in air. This goes hand in hand with lower cutting forces in the XHV environment and corresponding changes in chip formation. The underlying mechanisms and the ramifications with respect to application of this approach to dry machining of other metals are discussed.


1966 ◽  
Vol 181 (1) ◽  
pp. 687-705 ◽  
Author(s):  
P. L. Barlow

It has previously been suggested that the reduction in cutting forces obtained by the presence of fluids such as CCl4 on the backface or free surface of the forming chip was due to diffusion of the fluid into the body of the chip in the region of the shear zone. In the present work, experiments with carbon tetrachloride tagged with carbon-14 and with carbon tetrachloride tagged with chlorine-36 were performed with the object of assessing the extent of diffusion of lubricants into the chip when present on the free surface only. The results obtained disprove former hypotheses and suggest that the reduced cutting force is due solely to chemical reaction at the surface of the chip. Confirmation of the sensitivity of the surface of the deforming shear zone to change in surface condition was obtained by removing metal from this region by an electropolishing technique during slow speed cutting. By varying the electropolishing conditions increased or decreased cutting forces could be obtained. It is proposed that the result both of chemical reaction at the surface and of surface removal is to reduce the strain-hardening rate of the metal undergoing shear by reducing the surface barrier to the flow of dislocations out of the metal. The association of the surface reaction of carbon tetrachloride with a change in the strain-hardening characteristics of the metal in the shear zone leads to a classification of the backface phenomenon as a Rehbinder effect and enables this effect to be more closely defined than was hitherto possible. Evidence is also presented which indicates that the backface effect does not contribute to the reduction in cutting forces during rakeface lubrication and is therefore unimportant in practice where flood lubrication of the cutting region invariably occurs.


Sign in / Sign up

Export Citation Format

Share Document