scholarly journals Optimization of Process Parameters in CNC Turning of Aluminum 7075 Alloy Using L27 Array-Based Taguchi Method

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4470
Author(s):  
Mohammad Nishat Akhtar ◽  
T. Sathish ◽  
V. Mohanavel ◽  
Asif Afzal ◽  
K. Arul ◽  
...  

With the advent of the industrial revolution 4.0, the goal of the manufacturing industry is to produce a large number of products in relatively less time. This study applies the Taguchi L27 orthogonal array methodological paradigm along with response surface design. This work optimizes the process parameters in the turning of Aluminum Alloy 7075 using a Computer Numerical Control (CNC) machine. The optimal parameters influenced the rate of metal removal, the roughness of the machined surface, and the force of cutting. This experimental investigation deals with the optimization of speed (800 rpm, 1200 rpm, and 1600 rpm) and feed (0.15, 0.20, and 0.25 mm/rev) in addition to cutting depth (1.0, 1.5, and 2.0 mm) on the turning of Aluminum 7075 alloy in a CNC machine. The outcome in terms of results such as the removal rate of material (maximum), roughness on the machined surface (minimum), along with cutting force (least amount) were improved by the L27 array Taguchi method. There were 27 specimens of Al7075 alloy produced as per the array, and the corresponding responses were measured with the help of various direct contact and indirect contact sensors. Results were concluded all the way through diagrams of main effects in favor of signal-to-noise ratios and diagrams of surfaces with contour diagrams for various combinations of responses.

2021 ◽  
Vol 58 (2) ◽  
pp. 640-663
Author(s):  
Arti Saxena ◽  
YM Dubey ◽  
Manish Kumar ◽  
Abneesh Saxena

Today’s technology of automobile manufacturing industries depends mainly on a metal cutting operation like turning and drilling. This paper aims to improve turning and drilling operations in industries where necessity is to increase productivity by improving the metal removal rate. This paper-work uses the Taguchi method to analyze the input control parameter and optimize the significant ones to obtain the desired output. Taguchi method is a broadly used technique for experimental design and analysis of experimental data to improve the performance of machining operations like face turning, drilling, etc. in a CNC machine by taking input control factor cutting speed (CS), feed rate (FR), depth of cut (DOC) and then find out the significant ones to optimize machining operation. In this paper, CNMG190616-M5-TM2501 and SD205A-1050–056-12R1-P cutting tool are used for turning and drilling operation respectively for H-13 (P8) material, and then by applying Taguchi L9 array and further analysis using ANOVA and validation test through regression model is done on input control parameters to obtain better optimum performance of SBCNC 60 lathe machine.


2017 ◽  
Vol 67 (2) ◽  
pp. 25-36
Author(s):  
Prasad Raturi Himanshu ◽  
Prasad Lalta ◽  
Pokhriyal Mayank ◽  
Tirth Vineet

AbstractThe present study was focused on the fabrication of metal matrix and hybrid metal matrix composites through stir casting process. The Aluminium 6063 was used as base material and SiC/Al2O3 were used as reinforcement with varying weight %. The parametric study on a wire-cut electro discharge machine was carried out by using Taguchi Method. A statistical analysis of variance (ANOVA) was performed to identify the process parameters that were statistically significant. It was observed that the MRR decreases with increase in the percentage weight fraction of SiC and Al2O3 particles in the MMCs and HMMCs. Whereas, the surface roughness parameter increases with increase in the percentage weight fraction of SiC and Al2O3 particles due to the hardness of MMCs and HMMCs composites.


Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


2018 ◽  
Vol 877 ◽  
pp. 110-117 ◽  
Author(s):  
Poornesh Kumar Chaturvedi ◽  
Harendra Kumar Narang ◽  
Atul Kumar Sahu

Quality of the product is the major concern in manufacturing industries from customers as well as producers point of view. There are number of factors in the product such as surface condition, height, weight, length, width etc., which may be consider for the measurement of the quality. Surface roughness and Metal Removal Rate (MRR) are the two main outcomes on which numerous researchers have applied different approaches for several years to get optimum results. In this study, Taguchi Method is applied for getting optimum parameters settings for Surface roughness and Metal Removal Rate (MRR) in case of turning AlMg3 (AA5754) in CNC Lathe machine, which is an aluminum alloy having diameter 20 mm and length 100 mm. The three parameters i.e. spindle speed, feed rate and depth of cut with 3 levels are taken as the process variables and the working ranges of these parameters for conducting experiments are selected based on Taguchi’s L9 Orthogonal Array (OA) design. To analyze the significant process parameters; main effect plots for data means and for S/N ratio are generated using Minitab statistical software.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 906
Author(s):  
Hong Lu ◽  
Qian Cheng ◽  
Xinbao Zhang ◽  
Qi Liu ◽  
Yu Qiao ◽  
...  

Gantry-type computer numerical control (CNC) machines are widely used in the manufacturing industry. A novel structure with moveable gantry is proposed to improve the traditional gantry-type machine structure’s disadvantage of taking up too much space. Geometric errors have direct impacts on the actual position of the tool, which significantly reduces the accuracy of machines. Errors of different components are always coupled and have uncertain effects on the total geometric error. Thus, it is essential to find an effective way to identify the dominant errors and do targeted compensation. First, a novel identification method using value leaded global sensitivity analysis (VLGSA) is proposed to find the dominant errors. In VLGSA, weighting factors which show the influence of the error range are used to modify the multi-body system (MBS) error model. Results show that the dominant errors in three directions respectively contribute 80%, 86% and 85% of the total error in their directions. Then, errors identified by VLGSA are modeled by least-square linear fitting and B-spline interpolation methods, respectively, according to the feature of error data. Finally, the models are applied in a new real-time compensation system developed on the Beckhoff TwinCAT servo system. Experimental results from the gantry-type CNC engraving and milling machine show the proposed method can help figure out the most dominant errors and reduce around 90% of the total error.


2012 ◽  
Vol 217-219 ◽  
pp. 2051-2055
Author(s):  
Ming Li Xie ◽  
Ling Lu

In the process of cam grinding, the fluctuation of grinding force can lead to the abnormal wear of the grinding wheel, the decrease of the grinding surface quality and even the damage of the grinding process system. The paper took the grinding process of numerical control cam grinding machine as research subject, the grinding force mathematical model was built, the indirect test and control measures were researched and an adaptive control method based on neural network was proposed and applied to the grinding force control of the cam grinding process. At last, the controller was designed and the grinding simulation was performed with MATLAB, which proved that the system could solve the fluctuation of grinding force during the process of cam grinding and the controller was equipped with good dynamic characteristic. The results indicate that the method can realize the purpose of optimal metal removal rate and enhance the grinding quality of cams.


2013 ◽  
Vol 748 ◽  
pp. 699-703
Author(s):  
Zhang Lei

At present, the majority of enterprise technology management and production management have entered the network era. The demand for people who are occupied in 3D product design, numerical control advanced engineering technology is gradually increased. In order to speed up the production development of factories, we need to greatly improve the productivity of CNC machine. Therefore, CNC networking and management is imperative. This article describes background of the implementation of the numerical network management as well as its necessity. According to the industry characteristics of design and manufacturing and production management, this paper analyzes proposals on the network management system of CNC and describes the main functions of the machine network system and the results after the implementation. The network system of CNC is to improve the productivity of CNC machine, and give references to the application of CNC machine networking in large machine manufacturing industry.


2012 ◽  
Vol 488-489 ◽  
pp. 876-880 ◽  
Author(s):  
Manoj Kumar Kuttuboina ◽  
A. Uthirapathi ◽  
Singaravelu D. Lenin

The effect of process parameters namely peak current, pulse on time and flushing pressure on electrical discharge machining (EDM) of titanium alloy (Ti–6Al–4V) were investigated by using three different tool electrode materials namely copper, brass, and aluminium. Kerosene is used as dielectric. The process parameters for machining Ti6Al4V are varied at three levels by using Taguchi's orthogonal array table. The responses such as Metal Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (SR) are measured and the most significant parameter was confirmed by ANOVA (Analysis Of Variance). The test result shows that copper electrode material possesses higher MRR, less TWR as compared to brass and aluminium. Brass and copper tools has good surface finish as compared with aluminium. The finest electrode material for machining of Ti6Al4V alpha beta alloy in EDM process was in the order of copper, brass and aluminium.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1602
Author(s):  
Yao-Yang Tsai ◽  
Jihng-Kuo Ho ◽  
Wen-Hao Wang ◽  
Chia-Chin Hsieh ◽  
Chung-Chen Tsao ◽  
...  

Slicing ceramic (SC) is well-known as difficult-to-cut material. It is a hard and brittle material. The Grey-Taguchi method, which converts multiple response problems into a single response, is used to determine the effect of the process parameters for wire-sawing on multiple quality characteristics. The wire-sawing parameters include the wire tension (T), the slurry concentration (C), mixed grains mesh size (G), the wire speed (S), and the working load (P). The machining quality characteristics include a material removal rate (MRR), machined surface roughness (SR) of SC, kerf width (KW), wire wear (WW), and flatness (FT). An analysis of variance (ANOVA) is used to identify the mixed grains and slurry concentration that have a significant effect on multiple quality characteristics. The results of the ANOVA using the Grey-Taguchi method show that the optimum conditions are T2C1G1S2P1 (wire tension of 24 N, slurry concentration of 10% wt., mixed grains of #600 + #1000 mesh size, wire speed of 2.8 m/s, and working load of 1.27 N). The respective improvement in MRR, machined SR of SC, KW, WW, and FT is 2.43%, 2.36%, 1.08%, 2.33%, and 14.27%. The addition of #600 + #1000 mixed grains mesh size to the slurry improves the machined SR of SC, KW, and WW. An increase in wire speed and working load and the use of appropriate mixed grains mesh size and slurry concentration increases the MRR for wire-saw machining.


Sign in / Sign up

Export Citation Format

Share Document