The Adaptive Control of Grinding Force of CNC Cam Grinder Based on Neural Network

2012 ◽  
Vol 217-219 ◽  
pp. 2051-2055
Author(s):  
Ming Li Xie ◽  
Ling Lu

In the process of cam grinding, the fluctuation of grinding force can lead to the abnormal wear of the grinding wheel, the decrease of the grinding surface quality and even the damage of the grinding process system. The paper took the grinding process of numerical control cam grinding machine as research subject, the grinding force mathematical model was built, the indirect test and control measures were researched and an adaptive control method based on neural network was proposed and applied to the grinding force control of the cam grinding process. At last, the controller was designed and the grinding simulation was performed with MATLAB, which proved that the system could solve the fluctuation of grinding force during the process of cam grinding and the controller was equipped with good dynamic characteristic. The results indicate that the method can realize the purpose of optimal metal removal rate and enhance the grinding quality of cams.

2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


1976 ◽  
Vol 98 (3) ◽  
pp. 1048-1052 ◽  
Author(s):  
R. W. Mayne ◽  
S. Malkin

This paper is concerned with the application of nonlinear programming methods to the surface grinding of steels and considers the specific case of plunge grinding. Performance equations based on a model of the process are presented and then optimized. Trade-off curves are established showing the best metal removal rate possible for given constraints on surface quality and at specified conditions of grinding wheel wear. Optimum values for the various parameters in the grinding process are also included. In addition, the sensitivity of steel grinding performance to nonoptimum choices of grinding wheel velocity and diameter is considered.


2010 ◽  
Vol 126-128 ◽  
pp. 361-366 ◽  
Author(s):  
Xiang Long Zhu ◽  
Ren Ke Kang ◽  
Yong Qing Wang ◽  
Dong Ming Guo

Grinding forces during grinding silicon wafer have great influences on the accuracy, surface quality and grinding yield of the wafer. It is necessary to develop an accurate and reliable grinding dynamometer for measuring and monitoring the grinding process of the large and thin wafer. In this work, a new 3D (three-dimensional) grinding dynamometer using piezoelectric sensors is designed and developed, which is used for a wafer grinder based on wafer rotating grinding method. The calibrating experiments of the 3D grinding dynamometer are carried out. The FEA and modal analysis are made and compared with the results of mode testing. Furthermore, the static performance parameters of the dynamometer are obtained from the loading experiment. The experiment results indicate that the 3D grinding dynamometer can measure axial, radial and tangential grinding force of grinding wheel with high sensitivity, good linearity, good repeatability and high natural frequency, and fully satisfied requirement for measuring and monitoring of the grinding force in wafer grinding process.


1959 ◽  
Vol 81 (3) ◽  
pp. 187-199 ◽  
Author(s):  
E. J. Krabacher

Optimum utilization of grinding wheels can best be achieved if the nature of their performance and wear characteristics, and the factors that affect these characteristics, are understood and applied. As reported in this paper, a comprehensive, continuing, grinding-research program has contributed to such an understanding. A study of the nature of grinding-wheel wear indicates that the grinding-wheel wear curve is similar to those of other cutting tools. It demonstrates further that the type of grinding operation significantly affects the nature of wheel wear. A unique technique has been developed for very accurately measuring grinding-wheel wear. This measured wear may be translated into terms of “grinding ratio,” which is the generally accepted parameter for measuring wheel wear. It is the ratio of the volume of metal removed per unit volume of wheel worn away. Extensive studies have been carried out to determine the effect of mechanical variables on grinding ratio, power required in metal removal, and on surface finish. Experimental findings indicate that grinding ratio decreases with increased metal-removal rate and increases with workpiece diameter, decreased chip load, and increased concentration of grinding fluid. Power is found to increase with both the metal-removal rate and the amount of metal removed. It increases slightly with workpiece diameter and is affected little by work-material hardness. Surface finish is found to improve with decreased metal-removal rate and decreased chip load. It also is affected little by work diameter or work-material hardness. Fundamental research in the mechanics of wheel wear is supplying much additional information in the study of grinding-wheel wear. The measurement of grinding forces employing a cylindrical grinding dynamometer provides the opportunity for relating the wear of grinding wheels to the basic mechanics of the process through such fundamental quantities as grinding forces, specific energy, and grinding friction. Two additional experimental techniques for the study of chip formation in grinding have also proved to be most useful research tools. A “quick-stop” apparatus is used to freeze the grinding action by accelerating a tiny workpiece almost instantaneously to grinding-wheel speed. Another technique permits the comparison of the shape of the grinding grit and that of the contour of its path through the workpiece by a unique replicating method.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2618 ◽  
Author(s):  
Jingbo Zhou ◽  
Laisheng Pan ◽  
Yuehua Li ◽  
Peng Liu ◽  
Lijian Liu

A line structured light sensor (LSLS) is generally constituted of a laser line projector and a camera. With the advantages of simple construction, non-contact, and high measuring speed, it is of great perspective in 3D measurement. For traditional LSLSs, the camera exposure time is usually fixed while the surface properties can be varied for different measurement tasks. This would lead to under/over exposure of the stripe images or even failure of the measurement. To avoid these undesired situations, an adaptive control method was proposed to modulate the average stripe width (ASW) within a favorite range. The ASW is first computed based on the back propagation neural network (BPNN), which can reach a high accuracy result and reduce the runtime dramatically. Then, the approximate linear relationship between the ASW and the exposure time was demonstrated via a series of experiments. Thus, a linear iteration procedure was proposed to compute the optimal camera exposure time. When the optimized exposure time is real-time adjusted, stripe images with the favorite ASW can be obtained during the whole scanning process. The smoothness of the stripe center lines and the surface integrity can be improved. A small proportion of the invalid stripe images further proves the effectiveness of the control method.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yuqi Wang ◽  
Qi Lin ◽  
Xiaoguang Wang ◽  
Fangui Zhou

An adaptive PD control scheme is proposed for the support system of a wire-driven parallel robot (WDPR) used in a wind tunnel test. The control scheme combines a PD control and an adaptive control based on a radial basis function (RBF) neural network. The PD control is used to track the trajectory of the end effector of the WDPR. The experimental environment, the external disturbances, and other factors result in uncertainties of some parameters for the WDPR; therefore, the RBF neural network control method is used to approximate the parameters. An adaptive control algorithm is developed to reduce the approximation error and improve the robustness and control precision of the WDPR. It is demonstrated that the closed-loop system is stable based on the Lyapunov stability theory. The simulation results show that the proposed control scheme results in a good performance of the WDPR. The experimental results of the prototype experiments show that the WDPR operates on the desired trajectory; the proposed control method is correct and effective, and the experimental error is small and meets the requirements.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4470
Author(s):  
Mohammad Nishat Akhtar ◽  
T. Sathish ◽  
V. Mohanavel ◽  
Asif Afzal ◽  
K. Arul ◽  
...  

With the advent of the industrial revolution 4.0, the goal of the manufacturing industry is to produce a large number of products in relatively less time. This study applies the Taguchi L27 orthogonal array methodological paradigm along with response surface design. This work optimizes the process parameters in the turning of Aluminum Alloy 7075 using a Computer Numerical Control (CNC) machine. The optimal parameters influenced the rate of metal removal, the roughness of the machined surface, and the force of cutting. This experimental investigation deals with the optimization of speed (800 rpm, 1200 rpm, and 1600 rpm) and feed (0.15, 0.20, and 0.25 mm/rev) in addition to cutting depth (1.0, 1.5, and 2.0 mm) on the turning of Aluminum 7075 alloy in a CNC machine. The outcome in terms of results such as the removal rate of material (maximum), roughness on the machined surface (minimum), along with cutting force (least amount) were improved by the L27 array Taguchi method. There were 27 specimens of Al7075 alloy produced as per the array, and the corresponding responses were measured with the help of various direct contact and indirect contact sensors. Results were concluded all the way through diagrams of main effects in favor of signal-to-noise ratios and diagrams of surfaces with contour diagrams for various combinations of responses.


Author(s):  
M.A. Younis ◽  
H. Alawi

The high hardness and chemical effects of tool steels M2 and T15 cause a rapid grinding wheel wear and micro structural changes in the ground surface. The performance of sulphur-, wax-, and varnish-impregnated grinding wheels in grinding hardened tool steels M2 and T15 is investigated and compared with the performance of conventional alumina wheels. Impregnation with sulphur had in all cases beneficial effects by decreasing the grinding forces, increasing the maximum metal removal rate, improving surface integrity, and increasing considerably the grinding ratio. It also gave cost saving compared to the plain grinding wheel. The improvement was a result of the sulphur being more efficiently supplied into the chip formation process as compared to using grinding coolant only.


2013 ◽  
Vol 457-458 ◽  
pp. 172-176
Author(s):  
Zong Fu Guo ◽  
Xiao Min Sheng ◽  
Gui Zhi Xie ◽  
De Zhen Yin ◽  
Wen Xin Li

This paper via investigate the process of 9SiCr alloy steel in high efficiency deep grinding to find the rule between grinding wheel speed vs depth of cut ap and speed of table vw with the grinding force and the surface quality. Intend to develop a suitable method of the grinding process of 9SiCr alloy steel in high efficiency deep grinding, to obtain high removal rate and good surface quality.


Sign in / Sign up

Export Citation Format

Share Document