scholarly journals Analysis of the Influence of Thickness and Density on Acoustic Absorption of Materials Made from Used Cigarette Butts

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4524
Author(s):  
Valentín Gómez Escobar ◽  
Celia Moreno González ◽  
Guillermo Rey Gozalo

The effects of the density and thickness of samples made from used cigarette butts on acoustic characteristics were analyzed in this study. All the analyzed samples showed high acoustic performance, indicating that the fabrication of acoustic absorbing material may be a good use for this problematic waste (due to its toxicity, continuous generation, lack of recycling method, etc.). An increase in either density or thickness shifted the absorption characteristics of the samples to lower frequencies and increased the overall absorption. The relationships of the frequency and value of the maximum absorption coefficient with thickness and/or density were analyzed. The shift of the maximum absorption coefficient value due to varying thickness is in good agreement with previous studies.

2017 ◽  
Vol 739 ◽  
pp. 125-134
Author(s):  
Kylie Wong ◽  
Qumrul Ahsan ◽  
Azma Putra ◽  
Sivarao Subramonian ◽  
Noraiham Mohamad ◽  
...  

This paper demonstrates the feasibility of spent tea leaf (STL) fiber as an eco-friendly sound absorbing material. STL fiber is a by-product which was extracted from tea plant. STL are rich in polyphenols (tannins) which cause high resistance to fungal and termites, and high resistance to fire. In addition, STL are hollow and cellular in nature and thus perform well as acoustic and thermal insulators. Three different grades of STL were studied and the acoustic property was analyzed in terms of sound absorption coefficient and transmission loss. Experimental measurements of sound absorption coefficient in impedance tube are conducted. It was found that finest STL fiber grade exhibits better acoustic performance among others. Furthermore, the effect of latex binder on the acoustic property of STL fiber was also analyzed. Results suggest that the types of binder such as polyurethane and latex influenced the acoustic performance of STL fiber.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. Putra ◽  
Y. Abdullah ◽  
H. Efendy ◽  
W. M. F. W. Mohamad ◽  
N. L. Salleh

Utilization of biomass for green products is still progressing in the effort to provide alternative clean technology. This paper presents the utilization of natural waste fibers from paddy as acoustic material. Samples of sound absorbing material from paddy waste fibers were fabricated. The effect of the fiber density, that is, the fiber weight and the sample thickness, and also the air gap on the sound absorption coefficient is investigated through experiment. The paddy fibers are found to have good acoustic performance with normal incidence absorption coefficient greater than 0.5 from 1 kHz and can reach the average value of 0.8 above 2.5 kHz. This result is comparable against that of the commercial synthetic glass wool. Attachment of a single layer of polyester fabric is shown to further increase the absorption coefficient.


2015 ◽  
Vol 749 ◽  
pp. 236-240
Author(s):  
Ting Ting Li ◽  
Ching Wen Lou ◽  
Jia Horng Lin

This study purposes to investigate acoustic absorbing and puncture resisting properties of wall covering composites with different number of layers, and then to construct prediction model of acoustic absorption coefficient. Puncture resistance linearly increases but maximum absorption coefficient shifts to lower frequency with number of layers.The acoustic absorbing property of wall covering composites presents porous acoustic-absorbing characteristic, and its prediction model correlates with critical frequency and maximum absorption coefficient. The resulting coverings have excellent puncture resistance and acoustic absorbing properties.


2002 ◽  
Vol 9 (2) ◽  
pp. 85-98 ◽  
Author(s):  
F. Asdrubali ◽  
K. V. Horoshenkov

The purpose of this work is to characterise experimentally and theoretically the acoustic performance of mixes of loose expanded clay granulates. The surface acoustic impedance is obtained from measurements in the impedance tube and predicted using the Pade approximation approach. The random incidence absorption coefficient is measured using the ISO 345/85 method. Experimental data for the surface acoustic impedance are used to deduce the porosity, tortuosity and the statistical pore size distribution; these parameters are difficult to obtain directly, because of the relatively low density of the loose granulates and the fact that the granular base contains 5–30% of the closed, unconnected pores. Good agreement between the theory and the results is found; 50–100 mm layers of expanded clay granulates can be used efficiently for noise control over a broad frequency range.


2010 ◽  
Vol 160-162 ◽  
pp. 1257-1263
Author(s):  
Xue Yang ◽  
Wei Xiong Yu ◽  
Shen Lin Yang ◽  
Lin He ◽  
Jin Li Sun

This paper describes an improved extended transfer matrix method to evaluate the acoustic absorption coefficient of multi-layered structure with viscoelactic materials for perpendicular incidence plane acoustic. Here, the dynamic behavior of viscoelastic materials is taken into account. By comparing the calculated and measured results, it is shown that the results calculated by the improved extended transfer matrix method are in good agreement with the results measured. This improved extended transfer matrix method can accurately estimate the sound properties of multilayered structures with viscoelastic materials.


2021 ◽  
pp. 107754632110082
Author(s):  
Hanbo Shao ◽  
Jincheng He ◽  
Jiang Zhu ◽  
Guoping Chen ◽  
Huan He

Our work investigates a tunable multilayer composite structure for applications in the area of low-frequency absorption. This acoustic device is comprised of three layers, Helmholtz cavity layer, microperforated panel layer, and the porous material layer. For the simulation and experiment in our research, the absorber can fulfill a twofold requirement: the acoustic absorption coefficient can reach near 0.8 in very low frequency (400 Hz) and the range of frequency is very wide (400–3000 Hz). In all its absorption frequency, the average of the acoustic absorption coefficient is over 0.9. Besides, the absorption coefficient can be tunable by the scalable cavity. The multilayer composite structure in our article solved the disadvantages in single material. For example, small absorption coefficient in low frequency in traditional material such as microperforated panel and porous material and narrow reduction frequency range in acoustic metamaterial such as Helmholtz cavity. The design of the composite structure in our article can have more wide application than single material. It can also give us a novel idea to produce new acoustic devices.


2021 ◽  
pp. 1-24
Author(s):  
Rong Guo ◽  
Zanzan Sun ◽  
Zhen Huang ◽  
Rui Luo

Abstract Aiming at reducing the high-amplitude and wide-frequency noise in charged air intake system of the powertrain, this paper proposes a new method for predicting the acoustic characteristics of an irregular cross-section multi-chamber perforated resonator under flow conditions. By this method, the presence of three-dimensional sound waves and the effects of higher-order modes are considered, and the acoustic performance of the resonator can be evaluated through the computation of transmission loss. Moreover, by discretizing the cross-section of perforated resonator and extracting node information, this method can solve the acoustic characteristics of the perforated resonator with any cross-section. Based on the transfer matrix method, the quadrupole parameters of each chamber are obtained. Then the acoustic characteristics of the multi-chamber perforated resonator could be calculated. The theoretical prediction data and the experimental data have been compared and the results show good agreement within the entire frequency range, which verifies the accuracy of the theoretical prediction approach. Based on this prediction approach, the influence of section ratio, structure parameters and inlet flow rate on the acoustic characteristics of the resonator is explored. The results show that when the structural parameters change, the peak resonance frequency of the resonator will have a regular shift. With the increase of the inlet flow rate, the main frequency band of sound attenuation will decrease significantly. The theoretical method developed in this work can be used for the calculation and optimization of multi-chamber resonators in various applications.


2021 ◽  
Vol 263 (3) ◽  
pp. 3714-3719
Author(s):  
Takamasa Sato ◽  
Shuichi Sakamoto ◽  
Isami Nitta ◽  
Shunsuke Unai ◽  
Takunari Isobe ◽  
...  

In this study, we conducted theoretical analyses and experiments related to the acoustic characteristics of the situation where sound waves are incident upon the side surfaces of a group of cylinders forming a pin-holder structure. The sound-absorption coefficient, entering its clearance between cylinders through the geometrical dimension of the clearance or the physical property of gas, was calculated. In the analytical model, the gap part of the pin-holder structure was divided into elements and approximated as a gap surrounded by two parallel planes. The characteristic impedance and propagation constant of the approximate gap were obtained and treated as one-dimensional transfer matrices; the sound-absorption coefficient was then calculated using the transfer-matrix method. The calculated value was compared to that obtained in an experiment with a sample prepared using a 3D printer; the sound-absorption coefficient was measured using a 2-microphone impedance-measuring tube. We attempted to make a simple yet accurate estimation of sound-absorption coefficient using these procedures. Our theoretical values displayed a similar tendency to that obtained by experiment.


2019 ◽  
pp. 152808371985877 ◽  
Author(s):  
Pilar Segura-Alcaraz ◽  
Jorge Segura-Alcaraz ◽  
Ignacio Montava ◽  
Marilés Bonet-Aracil

Textile materials can be used as acoustic materials. In this study, the acoustic absorption coefficient of multilayer fabrics with 60 ends/cm and 15, 30, 45, and 60 picks/cm is measured when the fabric is added as a resistive layer on top of a polyester nonwoven, in order to study the influence of the fabric spatial structure in the acoustic absorption of the assembly. Five different fabric structures are used. Design of experiments and data analysis tools are used to describe the influence of two manufacturing factors on the sound absorption coefficient of the ensemble. These factors are the fabric weft count (picks/cm) and the thickness of the nonwoven (mm). The experimental conditions under which the maximum sound absorption coefficient is achieved are found. The influence of each factor and a mathematical model are obtained. Results of statistical and optimization analysis show that for the same fabric density, sound absorption coefficient increases as the number of layers decreases.


Sign in / Sign up

Export Citation Format

Share Document