scholarly journals Bending and Buckling of Circular Sandwich Plates with a Hardened Core

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4741
Author(s):  
Zizi Pi ◽  
Zilong Zhou ◽  
Zongbai Deng ◽  
Shaofeng Wang

Hard-core sandwich plates are widely used in the field of aviation, aerospace, transportation, and construction thanks to their superior mechanical properties such as sound absorption, heat insulation, shock absorption, and so on. As an important form, the circular sandwich is very common in the field of engineering. Thus, theoretical analysis and numerical simulation of bending and buckling for isotropic circular sandwich plates with a hard core (SP-HC) are conducted in this study. Firstly, the revised Reissner’s theory was used to derive the bending equations of isotropic circular SP-HC for the first time. Then, the analytic solutions to bending deformation for circular and annular sandwich SP-HCs under some loads and boundary conditions were obtained through the decoupled simplification. Secondly, an analytic solution to bending deformation for a simply supported annular SP-HC under uniformly distributed bending moment and shear force along the inner edge was given. Finally, the differential equations of buckling for circular SP-HCs in polar coordinates were derived to obtain the critical loads of overall instability of SP-HC under simply supported and fixed-end supported boundary conditions. Meanwhile, the numerical simulations using Nastran software were conducted to compare with the theoretical analyses using Reissner’s theory and the derived models in this study. The theoretical and numerical results showed that the present formula proposed in this study can be suitable to both SP-HC and SP-SC. The efforts can provide valuable information for safe and stable application of multi-functional composite material of SP-HC.

Author(s):  
Trung-Kien Nguyen ◽  
Thuc P Vo ◽  
Huu-Tai Thai

An improved transverse shear stiffness for vibration and buckling analysis of functionally graded sandwich plates based on the first-order shear deformation theory is proposed in this paper. The transverse shear stress obtained from the in-plane stress and equilibrium equation allows to analytically derive an improved transverse shear stiffness and associated shear correction factor of the functionally graded sandwich plate. Sandwich plates with functionally graded faces and both homogeneous hardcore and softcore are considered. The material property is assumed to be isotropic at each point and vary through the plate thickness according to a power-law distribution of the volume fraction of the constituents. Equations of motion and boundary conditions are derived from Hamilton’s principle. The Navier-type solutions are obtained for simply supported boundary conditions, and exact formulae are proposed and compared with the existing solutions to verify the validity of the developed model. Numerical results are obtained for simply supported functionally graded sandwich plates made of three sets of material combinations of metal and ceramic, Al/Al2O3, Al/SiC and Al/WC to investigate the effects of the power-law index, thickness ratio of layer, material contrast on the shear correction factors, natural frequencies and critical buckling loads as well as load–frequency curves.


2018 ◽  
Vol 11 (4) ◽  
pp. 719-756 ◽  
Author(s):  
T. V. AMARAL ◽  
J. P. S. OLIVEIRA ◽  
A. F. G. CALENZANI ◽  
F.B. TEIXEIRA

Abstract In hogging bending moment regions of continuous composite beams the collapse by lateral-distortional buckling (LDB) can occur. The design against LDB according to ABNT NBR 8800:2008 begins with the determination of the elastic critical moment, which depends, among other factors, of the distribution of the bending moment in the analyzed span, taken into account in the formulation through the modification parameter Cdist. To assess the analytical formulations prescribed by ABNT NBR 8800:2008, numerical FE models that simulate the LDB behavior of continuous steel-concrete composite beams were developed in this paper. The different boundary conditions presented in ABNT NBR 8800:2008 were checked using two different models: a simplified model, with a single simply supported span; and models with multiple internal supports and more than one span. It was observed that the Cdist values prescribed by ABNT NBR 8800:2008 can be unsafe, and therefore new values for Cdist are proposed in this paper.


2007 ◽  
Vol 353-358 ◽  
pp. 1161-1164 ◽  
Author(s):  
Jing Ning Yang ◽  
Yong Gang Zhao ◽  
Ping Qiu ◽  
Cai Xue Liu

Geometrically nonlinear bending and buckling of circular sandwich plates subjected to transversely non-uniform temperature rise is investigated in this paper. On the basis of sandwich plate theory, nonlinear equations governing the large thermal axis-symmetric deformations of circular sandwich plate in terms of the middle plane’s displacements are derived. Numerical solutions of the nonlinear boundary value problem are obtained by using the shooting method. Equilibrium paths and configurations for different boundary conditions and different values of materials and geometry parameters are illustrated. Numerical results show that the boundary conditions and the stiffness greatly effect critical buckling loads.


2021 ◽  
pp. 109963622199386
Author(s):  
Hessameddin Yaghoobi ◽  
Farid Taheri

An analytical investigation was carried out to assess the free vibration, buckling and deformation responses of simply-supported sandwich plates. The plates constructed with graphene-reinforced polymer composite (GRPC) face sheets and are subjected to mechanical and thermal loadings while being simply-supported or resting on different types of elastic foundation. The temperature-dependent material properties of the face sheets are estimated by employing the modified Halpin-Tsai micromechanical model. The governing differential equations of the system are established based on the refined shear deformation plate theory and solved analytically using the Navier method. The validation of the formulation is carried out through comparisons of the calculated natural frequencies, thermal buckling capacities and maximum deflections of the sandwich plates with those evaluated by the available solutions in the literature. Numerical case studies are considered to examine the influences of the core to face sheet thickness ratio, temperature variation, Winkler- and Pasternak-types foundation, as well as the volume fraction of graphene on the response of the plates. It will be explicitly demonstrated that the vibration, stability and deflection responses of the sandwich plates become significantly affected by the aforementioned parameters.


1961 ◽  
Vol 28 (2) ◽  
pp. 288-291 ◽  
Author(s):  
H. D. Conway

The bending by uniform lateral loading, buckling by two-dimensional hydrostatic pressure, and the flexural vibrations of simply supported polygonal plates are investigated. The method of meeting the boundary conditions at discrete points, together with the Marcus membrane analog [1], is found to be very advantageous. Numerical examples include the calculation of the deflections and moments, and buckling loads of triangular square, and hexagonal plates. A special technique is then given, whereby the boundary conditions are exactly satisfied along one edge, and an example of the buckling of an isosceles, right-angled triangle plate is analyzed. Finally, the frequency equation for the flexural vibrations of simply supported polygonal plates is shown to be the same as that for buckling under hydrostatic pressure, and numerical results can be written by analogy. All numerical results agree well with the exact solutions, where the latter are known.


1992 ◽  
Vol 70 (9) ◽  
pp. 696-705 ◽  
Author(s):  
A-K. Hamid ◽  
I. R. Ciric ◽  
M. Hamid

The problem of plane electromagnetic wave scattering by two concentrically layered dielectric spheres is investigated analytically using the modal expansion method. Two different solutions to this problem are obtained. In the first solution the boundary conditions are satisfied simultaneously at all spherical interfaces, while in the second solution an iterative approach is used and the boundary conditions are satisfied successively for each iteration. To impose the boundary conditions at the outer surface of the spheres, the translation addition theorem of the spherical vector wave functions is employed to express the scattered fields by one sphere in the coordiante system of the other sphere. Numerical results for the bistatic and back-scattering cross sections are presented graphically for various sphere sizes, layer thicknesses and permittivities, and angles of incidence.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


NANO ◽  
2016 ◽  
Vol 11 (04) ◽  
pp. 1650043 ◽  
Author(s):  
Haw-Long Lee ◽  
Win-Jin Chang

In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with simply supported-free-simply supported-free (SFSF) and clamped-free-free-free (CFFF) boundary conditions. The fundamental frequencies computed for the graphene layers without pores are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphenes with SFSF and CFFF boundary conditions, the frequencies decrease with increasing porosity. When the positions of the pores are symmetric with respect to the center of the graphene, the frequency of the zigzag nanoporous graphene is higher than that of the armchair one. To the best of our knowledge, this is first study investigating the relation between the vibrational behavior and porosity of nanoporous graphene layers, which is essential for tuning the material/structural design and exploring new applications for nanoporous graphenes.


Author(s):  
L. T. Lee ◽  
W. F. Pon

Abstract Natural frequencies of parallelogrammic plates are obtained by employing a set of beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials are generalted by using a Gram-Schmidt process, after the first member is constructed so as to satisfy all the boundary conditions of the corresponding beam problems accompanying the plate problems. The strain energy functional and kinetic energy functionals are transformed from Cartesian coordinate system to a skew coordinate system. The natural frequencies obtained by using the orthogonal polynomial functions are compared with those obtained by other methods with all four edges clamped boundary conditions and greet agreements are found between them. The natural frequencies for parallelogrammic plates with other boundary conditions, such as four edges simply supported, clamped-free and simply supported-free, are also obtained. This method is considered as a better and accurate comprehensive treatment for this type of problems.


Author(s):  
M.V. Sukhoterin ◽  
◽  
A.M. Maslennikov ◽  
T.P. Knysh ◽  
I.V. Voytko ◽  
...  

Abstract. An iterative method of superposition of correcting functions is proposed. The partial solution of the main differential bending equation is represented by a fourth-degree polynomial (the beam function), which gives a residual only with respect to the bending moment on parallel free faces. This discrepancy and the subsequent ones are mutually compensated by two types of correcting functions-hyperbolic-trigonometric series with indeterminate coefficients. Each function satisfies only a part of the boundary conditions. The solution of the problem is achieved by an infinite superposition of correcting functions. For the process to converge, all residuals must tend to zero. When the specified accuracy is reached, the process stops. Numerical results of the calculation of a square ribbed plate are presented.


Sign in / Sign up

Export Citation Format

Share Document