scholarly journals In Vitro Study of the Interaction of Innate Immune Cells with Liquid Silicone Rubber Coated with Zwitterionic Methyl Methacrylate and Thermoplastic Polyurethanes

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5972
Author(s):  
Franziska Woitschach ◽  
Marlen Kloss ◽  
Karsten Schlodder ◽  
Alexander Borck ◽  
Niels Grabow ◽  
...  

The biocompatibility of medical devices, such as implants and prostheses, is strongly determined by the host’s immune response to the implanted material. Monocytes and macrophages are main actors of the so-called foreign body reaction. The innate immune system macrophages (M) can be broadly classified into the pro-inflammatory M1-type and the anti-inflammatory, pro-healing M2-type. While a transient inflammatory initial state can be helpful during an infection, persistent inflammation interferes with proper healing and subsequent regeneration. The functional orientation of the immune response, mirrored by monocyte polarization, during interaction with different biomaterials has not yet been sufficiently explored. In implant manufacturing, thermoplastic polyurethane (TPU) represents the state-of-the-art material. The constantly growing areas of application and the associated necessary adaptations make the optimization of these materials indispensable. In the present study, modified liquid silicone rubber (LSR) were compared with two of the most commonly used TPUs, in terms of monocyte adhesion and M1/M2 polarization in vitro. Human monocytes isolated from venous blood were evaluated for their ability to adhere to various biomaterials, their gene expression profile, and their cytokine release. Based on the results, the different polymers exhibit different potential to bias monocytes with respect to early pro-inflammatory cytokine production and gene transcription. Furthermore, none of our test materials showed a clear trend towards M1 or M2 polarization. However, we were able to evaluate the inflammatory potential of the materials, with the classic TPUs appearing to be the most unreactive compared to the silicone-based materials.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


2021 ◽  
Author(s):  
Tai L Ng ◽  
Erika J Olson ◽  
Tae Yeon Yoo ◽  
H. Sloane Weiss ◽  
Yukiye Koide ◽  
...  

Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single virus/gene basis. Here, we present a medium-throughput high-content cell-based assay to reveal the immunosuppressive effects of viral proteins. To test the predictive power of our approach, we developed a library of 800 genes encoding known, predicted, and uncharacterized human viral genes. We find that previously known immune suppressors from numerous viral families such as Picornaviridae and Flaviviridae recorded positive responses. These include a number of viral proteases for which we further confirmed that innate immune suppression depends on protease activity. A class of predicted inhibitors encoded by Rhabdoviridae viruses was demonstrated to block nuclear transport, and several previously uncharacterized proteins from uncultivated viruses were shown to inhibit nuclear transport of the transcription factors NF-kB and IRF3. We propose that this pathway-based assay, together with early sequencing, gene synthesis, and viral infection studies, could partly serve as the basis for rapid in vitro characterization of novel viral proteins.


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 191
Author(s):  
Emmanuelle Blanchard ◽  
Philippe Roingeard

Host cell membrane rearrangements induced by the hepatitis C virus (HCV) have been exclusively studied in vitro. These studies have shown that HCV induces double-membrane vesicles (DMVs), which probably serve to separate replication sites from the cytoplasmic sensors of the innate immune response. We report for the first time the observation of HCV-induced membrane rearrangements in liver biopsy specimens from patients chronically infected with HCV. Unlike observations performed in vitro, the membranous web detected in liver tissue seems essentially made of clusters of single-membrane vesicles derived from the endoplasmic reticulum and close to lipid droplets. This suggests that the DMVs could be a hallmark of laboratory-adapted HCV strains, possibly due to their ability to achieve a high level of replication. Alternatively, the concealment of viral RNA in DMVs may be part of innate immune response mechanisms particularly developed in hepatoma cell lines cultured in vitro. In any case, this constitutes the first report showing the differences in the membranous web established by HCV in vitro and in vivo.


2019 ◽  
Vol 14 ◽  
pp. 55-60 ◽  
Author(s):  
Hongqiang Li ◽  
Yanping Li ◽  
Tongyi Wu ◽  
Xiaofeng Liao ◽  
Tian Liu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7461
Author(s):  
Claire K. Holley ◽  
Edward Cedrone ◽  
Duncan Donohue ◽  
Barry W. Neun ◽  
Daniela Verthelyi ◽  
...  

Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product’s distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.


2008 ◽  
Vol 114 (5) ◽  
pp. 347-360 ◽  
Author(s):  
E. Ann Misch ◽  
Thomas R. Hawn

Although several lines of evidence suggest that variation in human inflammation is genetically controlled, the genes which regulate these responses are largely unknown. TLRs (Toll-like receptors) mediate recognition of microbes, regulate activation of the innate immune response and influence the formation of adaptive immunity. Cellular and molecular studies over the past several years have identified a number of common TLR polymorphisms that modify the cellular immune response and production of cytokines in vitro. In addition, human genetic studies suggest that some of these polymorphisms are associated with susceptibility to a spectrum of diseases. In this review, we summarize studies of common TLR polymorphisms and how this work is beginning to illuminate the influence of human variation on inflammation and disease susceptibility.


Sign in / Sign up

Export Citation Format

Share Document