scholarly journals Enhanced Defluoridation of Water Using Zirconium—Coated Pumice in Fixed-Bed Adsorption Columns

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6145
Author(s):  
Wondwosen Sime Geleta ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

Millions of people across the globe suffer from health issues related to high fluoride levels in drinking water. The purpose of this study was to test modified pumice as an adsorbent for the purification of fluoride-containing waters. The adsorption of fluoride onto zirconium-coated pumice (Zr–Pu) adsorbent was examined in fixed-bed adsorption columns. The coating of zirconium on the surface of VPum was revealed by X-ray diffractometer (XRD), Inductively coupled plasma-optical emission spectroscopy (ICP-EOS), and X-ray fluorescence (XRF) techniques. The degree of surface modification with the enhanced porosity of Zr–Pu was evident from the recorded scanning electron microscope (SEM) micrographs. The Brunauer-Emmett-Teller (BET) analysis confirmed the enhancement of the specific surface area of VPum after modification. The Fourier transform infrared (FTIR) examinations of VPum and Zr–Pu before and after adsorption did not reveal any significant spectrum changes. The pH drift method showed that VPum and Zr–Pu have positive charges at pHPZC lower than 7.3 and 6.5, respectively. Zr–Pu yielded a higher adsorption capacity of 225 mg/kg (2.05 times the adsorption capacity of VPum: 110 mg/kg), at pH = 2 and volumetric flow rate (QO) of 1.25 mL/min. Breakthrough time increases with decreasing pH and flow rate. The experimental adsorption data was well-matched by the Thomas and Adams-Bohart models with correlation coefficients (R2) of ≥ 0.980 (Zr–Pu) and ≥ 0.897 (VPum), confirming that both models are suitable tools to design fixed-bed column systems using volcanic rock materials. Overall, coating pumice with zirconium improved the defluoridation capacity of pumice; hence, a Zr–Pu-packed fixed-bed can be applied for defluoridation of excess fluoride from groundwater. However, additional investigations on, for instance, the influences of competing ions are advisable to draw explicit conclusions.

2014 ◽  
Vol 70 (2) ◽  
pp. 192-199 ◽  
Author(s):  
Yanyan Wang ◽  
Xiang Zhang ◽  
Qiuru Wang ◽  
Bing Zhang ◽  
Jindun Liu

We used natural resources of halloysite nanotubes and alginate to prepare a novel porous adsorption material of organic–inorganic hybrid beads. The adsorption behaviour of Cu(II) onto the hybrid beads was examined by a continuous fixed bed column adsorption experiment. Meanwhile, the factors affecting the adsorption capacity such as bed height, influent concentration and flow rate were investigated. The adsorption capacity (Q0) reached 74.13 mg/g when the initial inlet concentration was 100 mg/L with a bed height of 12 cm and flow rate of 3 ml/min. The Thomas model and bed-depth service time fitted well with the experimental data. In the regeneration experiment, the hybrid beads retained high adsorption capacity after three adsorption–desorption cycles. Over the whole study, the new hybrid beads showed excellent adsorption and regeneration properties as well as favourable stability.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wan-Chi Tsai ◽  
Mark Daniel G. de Luna ◽  
Hanna Lee P. Bermillo-Arriesgado ◽  
Cybelle M. Futalan ◽  
James I. Colades ◽  
...  

Fixed-bed adsorption studies using chitosan-coated bentonite (CCB) as adsorbent media were investigated for the simultaneous adsorption of Pb(II), Cu(II), and Ni(II) from a multimetal system. The effects of operational parameters such as bed height, flow rate, and initial concentration on the length of mass transfer zone, breakthrough time, exhaustion time, and adsorption capacity at breakthrough were evaluated. With increasing bed height and decreasing flow rate and initial concentration, the breakthrough and exhaustion time were observed to favorably increase. Moreover, the adsorption capacity at breakthrough was observed to increase with decreasing initial concentration and flow rate and increasing bed height. The maximum adsorption capacity at breakthrough of 13.49 mg/g for Pb(II), 12.14 mg/g for Cu(II), and 10.29 mg/g for Ni(II) was attained at an initial influent concentration of 200 mg/L, bed height of 2.0 cm, and flow rate of 0.4 mL/min. Adsorption data were fitted with Adams-Bohart, Thomas, and Yoon-Nelson models. Experimental breakthrough curves were observed to be in good agreement (R2>0.85andE%<50%) with the predicted curves generated by the kinetic models. This study demonstrates the effectiveness of CCB in the removal of Pb(II), Cu(II), and Ni(II) from a ternary metal solution.


2017 ◽  
Vol 56 (1) ◽  
pp. 1-11 ◽  
Author(s):  
K. Daly ◽  
A. Fenelon

AbstractElemental analysis of grass (Lolium perenne) is essential in agriculture to ensure grass quality and animal health. Energy-dispersive X-ray fluorescence (EDXRF) spectroscopy is a rapid, multi-element alternative to current methods using acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES). Percentage phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca), determined from grass samples using EDXRF, were within 0.035, 0.319, 0.025 and 0.061, respectively, of ICP-OES values. Concordance correlation coefficients computed using agreement statistics ranged from 0.4379 to 0.9669 (values close to one indicate excellent agreement); however, the level of agreement for each element depended on the calibrations used in EDXRF. Empirical calibrations gave excellent agreement for percentage P, K and Ca, but moderate agreement for percentage Mg due to a weaker correlation between standards and intensities. Standardless calibration using the fundamental parameters (FP) approach exhibited bias, with consistently lower values reported for percentage P and Mg, when compared with ICP-OES methods. The relationship between the methods was plotted as scatter plots with the line of equality included, and although correlation coefficients indicated strong relationships, these statistics masked the effects of consistent bias in the data for percentage P and Mg. These results highlight the importance of distinguishing agreement from correlation when using statistical methods to compare methods of analysis. Agreement estimates improved when a matching library of grass samples was added to the FP method. EDXRF is a comparable alternative to conventional methods for grass analysis when samples of similar matrix type are used as empirical standards or as a matching library.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 490
Author(s):  
Rudaviro Garidzirai ◽  
Phillimon Modisha ◽  
Innocent Shuro ◽  
Jacobus Visagie ◽  
Pieter van Helden ◽  
...  

The effects of Mg and Zn dopants on the catalytic performance of Pt/Al2O3 catalyst were investigated for dehydrogenation of perhydrodibenzyltoluene (H18-DBT) as a liquid organic hydrogen carrier. Al2O3 supports were modified with Mg and Zn to produce Mg-Al2O3 and Zn-Al2O3 with a target loading of 3.8 wt.% for dopants. The modified supports were impregnated with chloroplatinic acid solution to produce the catalysts Pt/Al2O3, Pt/Mg-Al2O3 and Pt/Zn-Al2O3 of 0.5 wt.% Pt loading. Thereafter, the catalysts were characterised using inductively coupled plasma- optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, hydrogen temperature-programmed reduction, carbon-monoxide pulse chemisorption, ammonia temperature-programmed desorption, X-ray diffraction and transmission electron microscopy. The dehydrogenation experiments were performed using a horizontal plug flow reactor system and the catalyst time-on-stream was 22 h. Pt/Mg-Al2O3 showed the highest average hydrogen flowrate of 29 nL/h, while an average of 27 nL/h was obtained for both Pt/Al2O3 and Pt/Zn-Al2O3. This has resulted in a hydrogen yield of 80% for Pt/Mg-Al2O3, 71% for Pt/Zn-Al2O3 and 73% for Pt/Al2O3. In addition, the conversion of H18-DBT ranges from 99% to 92%, Pt 97–90% and 96–90% for Pt/Mg-Al2O3, Pt/Zn-Al2O3 and Pt/Al2O3, respectively. Following the latter catalyst order, the selectivity to dibenzyltoluene (H0-DBT) ranges from 78% to 57%, 75–51% and 71–45%. Therefore, Pt/Mg-Al2O3 showed improved catalytic performance towards dehydrogenation of H18-DBT.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Izabela Michalak ◽  
Krzysztof Marycz ◽  
Katarzyna Basińska ◽  
Katarzyna Chojnacka

The biomass ofVaucheria sessilisforms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization.Vaucheria sessilisis a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.).


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2509 ◽  
Author(s):  
Camila S. Borges ◽  
David C. Weindorf ◽  
Geila S. Carvalho ◽  
Luiz R. G. Guilherme ◽  
Thalita Takayama ◽  
...  

Foliar analysis is very important for the nutritional management of crops and as a supplemental parameter for soil fertilizer recommendation. The elemental composition of plants is traditionally obtained by laboratory-based methods after acid digestion of ground and sieved leaf samples. This analysis is time-consuming and generates toxic waste. By comparison, portable X-ray fluorescence (pXRF) spectrometry is a promising technology for rapid characterization of plants, eliminating such constraints. This worked aimed to assess the pXRF performance for elemental quantification of leaf samples from important Brazilian crops. For that, 614 samples from 28 plant species were collected across different regions of Brazil. Ground and sieved samples were analyzed after acid digestion (AD), followed by quantification via inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine the concentration of macronutrients (P, K, Ca, Mg, and S) and micronutrients (Fe, Zn, Mn, and Cu). The same plant nutrients were directly analyzed on ground leaf samples via pXRF. Four certified reference materials (CRMs) for plants were used for quality assurance control. Except for Mg, a very strong correlation was observed between pXRF and AD for all plant-nutrients and crops. The relationship between methods was nutrient- and crop-dependent. In particular, eucalyptus displayed optimal correlations for all elements, except for Mg. Opposite to eucalyptus, sugarcane showed the worst correlations for all the evaluated elements, except for S, which had a very strong correlation coefficient. Results demonstrate that for many crops, pXRF can reasonably quantify the concentration of macro- and micronutrients on ground and sieved leaf samples. Undoubtedly, this will contribute to enhance crop management strategies concomitant with increasing food quality and food security.


2020 ◽  
Vol 38 (12) ◽  
pp. 1331-1344
Author(s):  
Shohel Siddique ◽  
Kyari Yates ◽  
Kerr Matthews ◽  
Laszlo J Csetenyi ◽  
James Njuguna

Oil-based mud (OBM) waste from the oil and gas exploration industry can be valorised to tailor-made reclaimed clay-reinforced low-density polyethylene (LDPE) nanocomposites. This study aims to fill the information gap in the literature and to provide opportunities to explore the effective recovery and recycling techniques of the resources present in the OBM waste stream. Elemental analysis using inductively coupled plasma–optical emission spectrometry (ICP-OES) and X-ray fluorescence analysis, chemical structural analysis by Fourier transform infrared (FTIR) spectroscopy, and morphological analysis of LDPE/organo-modified montmorillonite (LDPE/MMT) and LDPE/OBM slurry nanocomposites by scanning electron microscopy (SEM) have been conducted. Further analysis including calorimetry, thermogravimetry, spectroscopy, microscopy, energy dispersive X-ray analysis and X-ray diffraction (XRD) was carried out to evaluate the thermo-chemical characteristics of OBM waste and OBM clay-reinforced LDPE nanocomposites, confirming the presence of different clay minerals including inorganic salts in OBM slurry powder. The microscopic analysis revealed that the distance between polymer matrix and OBM slurry filler is less than that of MMT, which suggests better interfacial adhesion of OBM slurry compared with the adhesion between MMT and LDPE matrix. This was also confirmed by XRD analysis, which showed the superior delamination structure OBM slurry compared with the structure of MMT. There is a trend noticeable for both of these fillers that the nanocomposites with higher percentage filler contents (7.5 and 10.0 wt% in this case) were indicated to act as a thermal conductive material. The heat capacity values of nanocomposites decreased about 33% in LDPE with 7.5 wt% MMT and about 17% in LDPE with 10.0 wt% OBM slurry. It was also noted, for both nanocomposites, that the residue remaining after 1000°C increases with the incremental wt% of fillers in the nanocomposites. There is a big difference in residue amount (in %) left after thermogravimetric analysis in the two nanocomposites, indicating that OBM slurry may have significant influence in decomposing LDPE matrix; this might be an interesting area to explore in the future. The results provide insight and opportunity to manufacture waste-derived renewable nanocomposites with enhanced structural and thermal properties.


2020 ◽  
Vol 105 (9) ◽  
pp. 1392-1403
Author(s):  
Lingcheng Su ◽  
Jiajun Chen ◽  
Huada Ruan ◽  
Dongqi Chen ◽  
Xi Chen ◽  
...  

Abstract Thermal treatment is one of the most common processes in mineral modification, and this process has been applied to the modification of mineral waste material to improve its adsorption ability of methyl orange (MO) and lead (Pb) in this study. The properties of modified mineral waste material (MMWM) before and after thermal modification were characterized by using the Brunauer–Emmett–Teller (BET) N2 adsorption/desorption measurement, field emission scanning electron microscope (FESEM) coupled with energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase transformation was investigated related to the change in surface morphology and dehydroxylation that occurred in MMWM samples during the process of thermal treatment. To study adsorption performances of Pb and MO onto the newly modified MMWM, several experiments were carried out under different adsorption conditions and the results were determined using inductively coupled plasma optical emission spectrometry (ICP-OES) and UV-Vis spectrophotometry. The thermally treated MMWM samples showed morphological transformation and an increasing trend in BET specific surface area (SSA) up to 500 °C followed by a decreasing trend till 1000 °C. Thermal modification of MMWM successfully improved Pb adsorption from 349 to 515 mg/g, corresponding to the MMWM modified at 600 °C, and the methyl orange (MO) adsorption from 68 to 87.6 mg/g at 400 °C. The adsorptions of Pb and MO were mainly chemisorption and monolayer coverage, as the pseudo-second-order model and the Langmuir equation displayed good correlations for Pb and MO adsorption data.


Sign in / Sign up

Export Citation Format

Share Document