scholarly journals 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7346
Author(s):  
Amir Reza Ansari Dezfoli ◽  
Yu-Lung Lo ◽  
M. Mohsin Raza

An integrated simulation framework consisting of the 3D finite element method and 3D cellular automaton method is presented for simulating the multi-track and multi-layer selective laser melting (SLM) process. The framework takes account of all the major multi-physics phenomena in the SLM process, including the initial grain structure, the growth kinetics, the laser scanning strategy, the laser–powder and laser–matter interactions, the melt flow, and the powder-to-liquid-to-solid transformations. The feasibility of the proposed framework is demonstrated by simulating the evolution of the epitaxy grain structure of Inconel 718 (IN718) during a 15-layer SLM process performed using a bi-directional 67° rotation scanning strategy and various SLM process parameters. The simulation results are found to be in good agreement with the experimental observations obtained in the present study and in the literature. In particular, a strong (001) texture is observed in the final component, which indicates that the grains with a preferred <001> orientation win the competitive epitaxy grain growth process. In addition, the size and shape of the IN718 grains are governed primarily by the cooling rate, where the cooling rate is determined in turn by the SLM parameters and the build height. Overall, the results show that the proposed framework provides an accurate approach for predicting the final microstructures of SLM components, and therefore, it can play an important role in optimizing the SLM processing parameters in such a way as to produce components with the desired mechanical properties.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1821 ◽  
Author(s):  
Di Wang ◽  
Shibiao Wu ◽  
Yongqiang Yang ◽  
Wenhao Dou ◽  
Shishi Deng ◽  
...  

The laser scanning strategy has an important influence on the surface quality, residual stress, and deformation of the molten metal (deformation behavior). A divisional scanning strategy is an effective means used to reduce the internal stress of the selective laser melting (SLM) metal part. In order to understand and optimize the divisional scanning strategy, three divisional scanning strategies and an S-shaped orthogonal scanning strategy are used to produce 316L steel parts in this study. The influence of scanning strategy on the produced parts is verified from the aspects of densification, residual stress distribution and deformation. Experiments show that the 316L steel alloy parts adopted spiral divisional scanning strategy can not only obtain the densification of 99.37%, but they also effectively improve the distribution of residual stress and control the deformation degree of the produced parts. Among them, the spiral divisional scanning sample has the smallest residual stress in plane direction, and its σx and σy stress are controlled within 204 MPa and 103 MPa. The above results show that the spiral divisional scanning is the most conducive strategy to obtain higher residual stress performance of SLM 316L steel parts.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1763 ◽  
Author(s):  
Radek Vrána ◽  
Daniel Koutný ◽  
David Paloušek ◽  
Libor Pantělejev ◽  
Jan Jaroš ◽  
...  

This paper deals with the selective laser melting (SLM) processing strategy for strut-lattice structure production which uses only contour lines and allows the porosity and roughness level to be managed based on combination of the input and linear energy parameters. To evaluate the influence of a laser scanning strategy on material properties and surface roughness a set of experiments was performed. The single welds test was used to find the appropriate processing parameters to achieve continuous welds with known width. Strut samples were used to find a suitable value of weld overlapping and to clarify the influence of input and linear laser energy on the strut porosity and surface roughness. The samples of inclined hollow struts were used to compare the wall thickness with single welds width; the results showed about 25% wider welds in the case of a hollow strut. Using the proposed SLM strategy it is possible to reach a significantly lower porosity and surface roughness of the struts. The best results for struts with an inclination of 35.26° were achieved with 25% track overlapping, input energy in the range from 9 J to 10.5 J and linear energy Elin from 0.25 to 0.4 J/mm; in particular, the relative density of 99.83% and the surface roughness on the side of the strut of Ra 14.6 μm in an as-built state was achieved.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744015 ◽  
Author(s):  
Zeng Zheng ◽  
Lianfeng Wang ◽  
Biao Yan

Selective laser melting (SLM) was used to prepare 316L stainless steel parts and the effects of laser power on the microstructure and mechanical properties of the final products were studied. With increasing applied laser power, the defects of as-built parts were reduced greatly and the as-built parts presented a highest relative density of 99.1%. The tensile strength of samples was significantly improved from 321 ± 10 MPa to 722 ± 10 MPa. The microhardness was homogeneous; the residual stresses in the samples were tensile, which were higher in the section perpendicular to the laser scanning strategy. The probable reasons for this phenomenon were proposed.


Author(s):  
A. L. K. Rawlings ◽  
A. J. Birnbaum ◽  
J. G. Michopoulos ◽  
J. C. Steuben ◽  
A. P. Iliopoulos ◽  
...  

Abstract The formation of sub-grain cellular structures generated during the rapid solidification associated with selective laser melting (SLM) typically yields enhanced mechanical properties in terms of yield stress without considerable loss in ductility when compared with those of wrought material. The extent to which the sub-grain structure appears under standard metallographic preparation shows dependence on multiple systematic conditions. This study identifies the effects of solidification and cooling rate on the grain and sub-grain structure in stainless steel through varying the processing parameters (laser power, scan velocity and spot size) of single tracks on both as-received, small grain and annealed, giant grain substrates. The process parameters, in conjunction with the initial substrate microstructure, are key components in understanding the resulting microstructure. Process parameters, particularly scan velocity, dictate the solidification rate and primary regrowth directions while the initial microstructure and its thermomechanical history dictate the propensity for stored strain energy density. Modeling the thermal process allows for experimental analysis within the context of predicted location within processing space as it pertains to local interface velocity and temperature gradient. Furthermore, it highlights the fact that this specific material system behaves in a manner that is inconsistent with classical solidification theory.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 528
Author(s):  
Chunyue Yin ◽  
Zhehao Lu ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

The objective of the study is to investigate the corresponding microstructure and mechanical properties, especially bending strength, of the hypereutectic Al-Si alloy processed by selective laser melting (SLM). Almost dense Al-22Si-0.2Fe-0.1Cu-Re alloy is fabricated from a novel type of powder materials with optimized processing parameters. Phase analysis of such Al-22Si-0.2Fe-0.1Cu-Re alloy shows that the solubility of Si in Al matrix increases significantly. The fine microstructure can be observed, divided into three zones: fine zones, coarse zones, and heat-affected zones (HAZs). Fine zones are directly generated from the liquid phase with the characteristic of petaloid structures and bulk Al-Si eutectic. Due to the fine microstructure induced by the rapid cooling rate of SLM, the primary silicon presents a minimum average size of ~0.5 μm in fine zones, significantly smaller than that in the conventional produced hypereutectic samples. Moreover, the maximum value of Vickers hardness reaches ~170 HV0.2, and bending strength increases to 687.70 MPa for the as-built Al-22Si-0.2Fe-0.1Cu-Re alloys parts, which is much higher than that of cast counterparts. The formation mechanism of this fine microstructure and the enhancement reasons of bending strength are also discussed.


2019 ◽  
Vol 9 (9) ◽  
pp. 1922 ◽  
Author(s):  
Tae Woo Hwang ◽  
Young Yun Woo ◽  
Sang Wook Han ◽  
Young Hoon Moon

The selective laser-melting (SLM) process can be applied to the additive building of complex metal parts using melting metal powder with laser scanning. A metal mesh is a common type of metal screen consisting of parallel rows and intersecting columns. It is widely used in the agricultural, industrial, transportation, and machine protection sectors. This study investigated the fabrication of parts containing a mesh pattern from the SLM of AISI 304 stainless steel powder. The formation of a mesh pattern has a strong potential to increase the functionality and cost-effectiveness of the SLM process. To fabricate a single-layered thin mesh pattern, laser layering has been conducted on a copper base plate. The high thermal conductivity of copper allows heat to pass through it quickly, and prevents the adhesion of a thin laser-melted layer. The effects of the process conditions such as the laser scan speed and scanning path on the size and dimensional accuracy of the fabricated mesh patterns were characterized. As the analysis results indicate, a part with a mesh pattern was successfully obtained, and the application of the proposed method was shown to be feasible with a high degree of reliability.


Sign in / Sign up

Export Citation Format

Share Document