scholarly journals Computational Fluid Dynamics Simulations of Mitral Paravalvular Leaks in Human Heart

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7354
Author(s):  
Krzysztof Wojtas ◽  
Michał Kozłowski ◽  
Wojciech Orciuch ◽  
Łukasz Makowski

In recent years, computational fluid dynamics (CFD) has been extensively used in biomedical research on heart diseases due to its non-invasiveness and relative ease of use in predicting flow patterns inside the cardiovascular system. In this study, a modeling approach involving CFD simulations was employed to study hemodynamics inside the left ventricle (LV) of a human heart affected by a mitral paravalvular leak (PVL). A simplified LV geometry with four PVL variants that varied in shape and size was studied. Predicted blood flow parameters, mainly velocity and shear stress distributions, were used as indicators of how presence of PVLs correlates with risk and severity of hemolysis. The calculations performed in the study showed a high risk of hemolysis in all analyzed cases, with the maximum shear stress values considerably exceeding the safe level of 300 Pa. Results of our study indicated that there was no simple relationship between PVL geometry and the risk of hemolysis. Two factors that potentially played a role in hemolysis severity, namely erythrocyte exposure time and the volume of fluid in which shear stress exceeded a critical value, were not directly proportional to any of the characteristic geometrical parameters (shape, diameters, circumference, area, volume) of the PVL channel. Potential limitations of the proposed simplified approach of flow analysis are discussed, and possible modifications to increase the accuracy and plausibility of the results are presented.

1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 103
Author(s):  
Giancarlo Comes ◽  
Carlo Cravero

The present work is focused on the study of an innovative fluidic device. It consists of a two-ways diverter valve able to elaborate an inlet water flow and divert it through one of the two outlets without moving parts but as a result of a fluctuation of pressure induced by two actuation ports, or channels. Such apparatus is named Attachment Bi-Stable Diverter (ABD) and is able to work with the effect of the fluid adhesion to a convex wall adjacent to it, this phenomenon is known as Coanda Effect; it generates the force responsible for the fluid attachment and the consequent deviation. The main purpose of this work is to develop a knowhow for the design and development of such particular device. A mathematical model for the ABD has been developed and used to find the relationships between the geometrical parameters and the operative conditions. A configuration has been designed, simulated with a computational fluid dynamics approach. A prototype has been printed with and additive manufacturing printer and tested in laboratory to check the effective working point of the device.


Author(s):  
Chen Fu ◽  
C Patrick Bounds ◽  
Christian Selent ◽  
Mesbah Uddin

The characterization of a racecar’s aerodynamic behavior at various yaw and pitch configurations has always been an integral part of its on-track performance evaluation in terms of lap time predictions. Although computational fluid dynamics has emerged as the ubiquitous tool in motorsports industry, a clarity is still lacking about the prediction veracity dependence on the choice of turbulence models, which is central to the prediction variability and unreliability for the Reynolds Averaged Navier–Stokes simulations, which is by far the most widely used computational fluid dynamics methodology in this industry. Subsequently, this paper presents a comprehensive assessment of three commonly used eddy viscosity turbulence models, namely, the realizable [Formula: see text] (RKE), Abe–Kondoh–Nagano [Formula: see text], and shear stress transport [Formula: see text], in predicting the aerodynamic characteristics of a full-scale NASCAR Monster Energy Cup racecar under various yaw and pitch configurations, which was never been explored before. The simulations are conducted using the steady Reynolds Averaged Navier–Stokes approach with unstructured trimmer cells. The tested yaw and pitch configurations were chosen in consultation with the race teams such that they reflect true representations of the racecar orientations during cornering, braking, and accelerating scenarios. The study reiterated that the prediction discrepancies between the turbulence models are mainly due to the differences in the predictions of flow recirculation and separation, caused by the individual model’s effectiveness in capturing the evolution of adverse pressure gradient flows, and predicting the onset of separation and subsequent reattachment (if there be any). This paper showed that the prediction discrepancies are linked to the computation of the turbulent eddy viscosity in the separated flow region, and using flow-visualizations identified the areas on the car body which are critical to this analysis. In terms of racecar aerodynamic performance parameter predictions, it can be reasonably argued that, excluding the prediction of the %Front prediction, shear stress transport is the best choice between the three tested models for stock-car type racecar Reynolds Averaged Navier–Stokes computational fluid dynamics simulations as it is the only model that predicted directionally correct changes of all aerodynamic parameters as the racecar is either yawed from the 0° to 3° or pitched from a high splitter-ground clearance to a low one. Furthermore, the magnitude of the shear stress transport predicted delta force coefficients also agreed reasonably well with test results.


Vascular ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 474-482 ◽  
Author(s):  
S Demirel ◽  
D Chen ◽  
Y Mei ◽  
S Partovi ◽  
H von Tengg-Kobligk ◽  
...  

Purpose: To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. Basic methods: Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. Principal findings: Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03–5.46 Pa vs. eversion carotid endarterectomy: 0.12–5.22 Pa). Conclusions: Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.


Sign in / Sign up

Export Citation Format

Share Document