Prediction and Measurement of Corrosion Rates of Stainless Steel in Concentrated Sulfuric Acid

CORROSION ◽  
10.5006/0709 ◽  
2013 ◽  
Vol 69 (6) ◽  
pp. 543-550 ◽  
Author(s):  
S. Jones ◽  
K. Coley ◽  
J. Kish

When exposed to concentrated sulfuric acid, stainless steel exhibits unique electrochemical behavior. This behavior can be observed as an oscillation in open-circuit potential between the active and passive states. The transient nature of the corrosion behavior under these conditions results in a distinct challenge for measuring and predicting corrosion rates. Using a series of commercial alloys with various nickel contents, this paper outlines the utilization of electrochemical experimentation to refine the prediction of corrosion rates. The paper also discusses some of the difficulties associated with many traditional electrochemical techniques such as potentiodynamic scans when used for characterizing systems that undergo oscillations in open-circuit potential.

2016 ◽  
Vol 835 ◽  
pp. 131-135 ◽  
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

Stainless steel (SS) is one of the most commonly used metallic food contact materials. It may be classified based on its microstructure whether ferritic, austenitic, martensitic, duplex or precipitation hardened. Austenitic SS, among mentioned grades, has the largest contribution to market due to its numerous industrial and domestic applications. In this study, the corrosion behavior of AISI 202 SS – a cheaper grade of stainless steel, in three different solution temperatures of citric acid was investigated using different electrochemical techniques such as open-circuit potential (OCP) measurements, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results were compared to that obtained from conventional AISI 304 SS. OCP, polarization and impedance measurements agreed that AISI 202 SS has comparable resistance to that of AISI 304 SS in citric acid at ambient temperature and at 50 °C. At 70 °C, results of OCP measurements suggest that AISI 304 SS exhibited greater performance as indicated by more positive OCP values in the designated solution. EIS results indicate that the two alloys have identical corrosion resistance even at 70 °C as indicated by their comparable polarization resistance (Rp). The corrosion mechanism in both alloys is charge-transfer controlled as indicated by depressed semi-circular appearance of the generated Nyquist plots. The values of corrosion current densities (icorr) extracted from polarization curves indicate that the initial corrosion rates were higher in AISI 304 than AISI 202 SS suggesting that formation of more protective film may have occurred on the former alloy.


2020 ◽  
Vol 71 (7) ◽  
pp. 187-196
Author(s):  
Maria Magdalena Pricopi ◽  
Romeu Chelariu ◽  
Nicolae Apostolescu ◽  
Doina-Margareta Gordin ◽  
Daniel Sutiman ◽  
...  

The aim of this study was to investigate the influence of different process parameters as chemical composition, the pH value and immersion time on the corrosion of the some TiMoNb alloys, using different electrochemical techniques such as: cyclic voltammetry, open circuit potential (OCP) measurement, polarization curves and electrochemical impedance spectroscopy (EIS). The alloys were analyzed in the natural pH of the Ringer solution, but also with an acidic modification of the solution (ph = 4) and a basic modification (ph = 8). The more acidic values of pH, the more evident are differences between corrosion behavior of titanium-based alloys depending on their chemical compositions and immersion times.


1970 ◽  
Vol 25 ◽  
pp. 93-100
Author(s):  
Raju Ram Kumal ◽  
Jagadeesh Bhattarai

Roles of alloy-constituting elements on the corrosion behavior of the sputter-depositedamorphous W-Zr-(15-33)Cr alloys was studied in 1 M NaOH solution open to air at 25°Cusing corrosion tests and open circuit potential measurements. Zirconium and chromiummetals act synergistically with tungsten in enhancing the corrosion resistance of the sputterdepositedamorphous W-Zr-Cr alloys containing 15-33 at % chromium content so as toshow higher corrosion resistance than those of alloy-constituting elements in 1 M NaOHsolution. The corrosion rates of the amorphous W-Zr-(15-33)Cr alloys containing 9-33 at %tungsten are in the ranges of 2.0-5.0×10-3 mm.y-1 after immersion for 240 h in 1 M NaOHsolution which is about two orders of magnitude lower corrosion rates lower than that oftungsten and even slightly lower than that of the zirconium metal. The simultaneousadditions of zirconium and chromium metals in W-Zr-(15-33)Cr alloys are effective forennoblement of the open circuit potential of the tungsten metal.Keywords: W-Zr-Cr alloys, corrosion resistance, immersion test, open circuit potential, 1 MNaOH.DOI:  10.3126/jncs.v25i0.3312Journal of Nepal Chemical Society Volume 25, 2010 pp 93-100


2019 ◽  
Vol 26 (5) ◽  
pp. 630-640 ◽  
Author(s):  
Raul Davalos Monteiro ◽  
Jan van de Wetering ◽  
Benjamin Krawczyk ◽  
Dirk L. Engelberg

Abstract The corrosion behaviour of type 316L stainless steel in aqueous 30–50 wt%. NaOH at temperatures up to 90 °C has been elucidated. Exposure to room temperature environment showed parabolic weight loss behaviour, with corrosion rates of up to 0.4 mm/year. Higher NaOH concentrations and exposure temperatures resulted in a reduced stability of the electrochemical passivity domain, associated with higher corrosion rates. Exposure to de-aerated 50 wt%. NaOH presented corrosion rates of up to 0.5 mm/year at open circuit potential, with maximum corrosion rates under polarisation of up to ≈ 18 mm/year. The formation of a dark iron-oxy-hydroxide and nickel-oxide was observed, with exposure to temperatures in excess of 50 °C. The behaviour of type 316L stainless steel in hot caustic environment is compared to types 204, 304, 2205 stainless steel, and nickel alloy 200. Graphic Abstract


CORROSION ◽  
1968 ◽  
Vol 24 (6) ◽  
pp. 163-171 ◽  
Author(s):  
G. C WOOD ◽  
G. C. SOLTZ

Abstract The influence of anodic and cathodic prepolarization of electrodes, containing respectively 0.03, 0.48, and 1.3 percent carbon, in de-aerated N and 0.1 N sulfuric acid at 25 C (77 F) on the subsequent open circuit potential-time curves has been determined. Anodic pretreatment always lowers and cathodic pretreatment raises the initial potential on these curves. Magnitude of the potential shift and time required to resume the rest potential are larger the higher the prepolarizing time. The influence of carbon content and acid concentration is complex. Special experiments have indicated the importance of specimen, and especially solution history, and have permitted an interpretation in terms of polarization diagrams. The most likely explanation is the influence of sulfide or noble metal or metalloid ions derived from the alloy or possibly the solution in altering the number of active anodic sites. This is achieved by an increase in the degree of hydrogen poisoning or by accumulation or plating out of metals or metalloids.


1970 ◽  
Vol 25 ◽  
pp. 75-82
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

The synergistic effect of the simultaneous additions of tungsten and zirconium in thesputter-deposited amorphous or nanocrystalline Zr-(12-21)Cr-W alloys is studied in 0.5 MNaCl solution open to air at 25°C using corrosion tests and open circuit potentialmeasurements. Corrosion rates of the sputter-deposited Zr-(12-21)Cr-W alloys containing10-80 at % tungsten (that is, 0.95-1.85 x 10-2 mm.y-1) are more than one order of magnitudelower than that of the sputter-deposited tungsten and even lower than those of zirconium aswell as chromium in 0.5 M NaCl solution. The addition of 8-73 at % zirconium content inthe sputter-deposited binary W-(12-21)Cr alloys seems to be more effective to improve thecorrosion-resistant properties of the sputter-deposited ternary Zr-Cr-W alloys containing12-21 at % chromium in 0.5 M NaCl solution. The sputter-deposited Zr-(17-21)Cr-W alloyscontaining an adequate amounts of zirconium metal showed the more stable passivity andshowed higher corrosion resistance than those of alloy-constituting elements in 0.5 M NaClsolution open to air at 25°C.Keywords: Zr-(12-21)Cr-W alloys, sputter deposition, corrosion test, open circuit potential,0.5 M NaCl.DOI:  10.3126/jncs.v25i0.3305Journal of Nepal Chemical Society Volume 25, 2010 pp 75-82


ChemInform ◽  
2010 ◽  
Vol 25 (49) ◽  
pp. no-no
Author(s):  
B.-M. IM ◽  
E. AKIYAMA ◽  
H. HABAZAKI ◽  
A. KAWASHIMA ◽  
K. ASAMI ◽  
...  

Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


Sign in / Sign up

Export Citation Format

Share Document