scholarly journals Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 366
Author(s):  
Hee-Yeon Kim ◽  
Byung-Hoon Kim ◽  
Myung-Sun Kim

This study aims to investigate the surface characterization and pre-osteoblast biological behaviors on the three-dimensional (3D) poly(ε-caprolactone)/β-tricalcium phosphate (β-TCP) scaffold modified by amine plasma-polymerization. The 3D PCL scaffolds were fabricated using fused deposition modeling (FDM) 3D printing. To improve the pre-osteoblast bioactivity, the 3D PCL scaffold was modified by adding β-TCP nanoparticles, and then scaffold surfaces were modified by amine plasma-polymerization using monomer allylamine (AA) and 1,2-diaminocyclohexane (DACH). After the plasma-polymerization of PCL/β-TCP, surface characterizations such as contact angle, AFM, XRD, and FTIR were evaluated. In addition, mechanical strength was measured by UTM. The pre-osteoblast bioactivities were evaluated by focal adhesion and cell proliferation. Osteogenic differentiation was investigated by ALP activity, Alizarin red staining, and Western blot. Plasma-polymerization induced the increase in hydrophilicity of the surface of the 3D PCL/β-TCP scaffold due to the deposition of amine polymeric thin film on the scaffold surface. Focal adhesion and proliferation of pre-osteoblast improved, and osteogenic differentiation was increased. These results indicated that 3D PCL/β-TCP scaffolds treated with DACH plasma-polymerization showed the highest bioactivity compared to the other samples. We suggest that 3D PCL/β-TCP scaffolds treated with DACH and AA plasma-polymerization can be used as a promising candidate for osteoblast differentiation of pre-osteoblast.

2021 ◽  
Vol 8 ◽  
Author(s):  
Eisner Salamanca ◽  
Ting-Chia Tsao ◽  
Hao-Wen Hseuh ◽  
Yi-Fan Wu ◽  
Cheuk-Sing Choy ◽  
...  

Guided-bone regeneration (GBR) is increasingly using three-dimensional (3D) printing by fused deposition modeling (FDM) to build the filaments used for treatment. Polylactic acid (PLA) and beta-tricalcium phosphate (β-TCP) are widely used as base materials in 3D printing, necessitating that they are studied together in the context of GBR treatment. This study sought to test and compare the properties and efficacy of different ratios of β-TCP and PLA used to make the 3D-printed filament material to find the most effective combination of materials for GBR treatment. Several ratios of PLA to β-TCP were tested, including PLA/β-TCP ratios of 95%/5% (PLA-5), 90%/10% (PLA-10), 85%/15% (PLA-15), and 80%/20% (PLA-20), and quantitative real-time polymerase chain reaction (qPCR) in vitro testing was done to characterize the material. After adding β-TCP to PLA, mechanical testing indicated that tensile and elongation strengths decreased, hardness was retained, and cell proliferation was promoted. The effect of PLA and β-TCP on increasing alkaline phosphatase (ALP) activity was significantly greater in a ratio of 10% β-TCP/90% PLA at 5 days (p < 0.05) than in any other ratios tested. This is supported by results from qPCR testing, which showed early osteoblast-like differentiation of DLX5, RUNX2, OPG, OC, and collagen type 1 (COL-1) expression levels similar to cells cultured on PLA-10. Our results demonstrated that 3D printing of filaments produced in a ratio of 90% PLA to 10% β-TCP was more effective for GBR than that of filaments produced only using PLA.


Author(s):  
Kamaljit Singh Boparai ◽  
Gurpartap Singh ◽  
Rupinder Singh ◽  
Sarabjit Singh

Abstract In this work, 3D printed master patterns of acrylonitrile butadiene styrene (ABS) thermoplastic material have been used for the preparation of Ni-Cr based functional prototypes as partial dentures (PD). The study started with patient specific three dimensional (3D), CAD data (fetched through scanning). This data was used for preparation of .STL file for printing of master patterns on fused deposition modeling (FDM) setup. The 3D printed master patterns were further wax coated to reduce the surface irregularities (as cost effective post processing technique). The hybrid patterns were subjected to investment casting for the preparation of Ni-Cr based PD. The finally prepared functional prototypes as PD were optimized for dimensional accuracy, surface finish and surface hardness as responses. The results are visualized and supported by photomicrographs and in-vitro analysis.


2018 ◽  
Vol 33 (2) ◽  
pp. 281-294 ◽  
Author(s):  
Lukas Raddatz ◽  
Marline Kirsch ◽  
Dominik Geier ◽  
Jörn Schaeske ◽  
Kevin Acreman ◽  
...  

Biodegradable materials play a crucial role in both material and medical sciences and are frequently used as a primary commodity for implants generation. Due to their material inherent properties, they are supposed to be entirely resorbed by the patients' body after fulfilling their task as a scaffold. This makes a second intervention (e.g. for implant removal) redundant and significantly enhances a patient’s post-operative life quality. At the moment, materials for resorbable and biodegradable implants (e.g. polylactic acid or poly-caprolactone polymers) are still intensively studied. They are able to provide mandatory demands such as mechanical strength and attributes needed for high-quality implants. Implants, however, not only need to be made of adequate material, but must also to be personalized in order to meet the customers’ needs. Combining three dimensional-printing and high-resolution imaging technologies a new age of implant production comes into sight. Three dimensional images (e.g. magnetic resonance imaging or computed tomography) of tissue defects can be utilized as digital blueprints for personalized implants. Modern additive manufacturing devices are able to use a variety of materials to fabricate custom parts within short periods of time. The combination of high-quality resorbable materials and personalized three dimensional-printing for the custom application will provide the patients with the best suitable and sustainable implants. In this study, we evaluated and compared four resorbable and three dimensional printable materials for their in vitro biocompatibility, in vitro rate of degradation, cell adherence and behavior on these materials as well as support of osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The tests were conducted with model constructs of 1 cm2 surface area fabricated with fused deposition modeling three dimensional-printing technology.


2019 ◽  
Vol 54 (16) ◽  
pp. 2087-2099 ◽  
Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
TP Singh ◽  
Ajay Batish

This paper reports the flexural, pull-out, and fractured surface characterization for multi-material three-dimensional printed functionally graded prototypes, which is prepared on fused deposition modeling setup. The work is an extension of previously reported study in which different thermoplastic matrices of polylactic acid blended with polyvinyl chloride, wood dust, and Fe3O4 powder (as multiple blended feedstock filaments) have been prepared separately with twin screw extrusion for possible three-dimensional printing. Finally, functionally graded prototypes with alternative layers of polylactic acid (01 layer), polylactic acid + polyvinyl chloride (01 layer), polylactic acid + wood dust (02 layers), and polylactic acid + Fe3O4 (02 layers) were three-dimensional printed on fused deposition modeling for flexural samples as per ASTM D790. With regard to process parameters of fused deposition modeling (in this case study), infill density of 100%, infill angle of 45°, and infill speed of 50 mm/s were the optimized processing conditions. The results of study suggest that maximum flexural strength 26.92 MPa and pull-out strength 18.11 MPa were observed for functionally graded multi-material three-dimensional printed prototypes. From fractured surface analysis and hardness result, it has been ascertained that higher infill density and lower infill angle lead to better diffusion of material in layer-by-layer fashion resulting into less void formation and better flexural and pull-out performances. The novelty of this work lies in accessing the behavior of three-dimensional printed prototypes having different functional ability for each layer, with a potential to replace hybrid blend-based prototypes.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1559
Author(s):  
Mohammad Reza Khosravani ◽  
Jonas Schüürmann ◽  
Filippo Berto ◽  
Tamara Reinicke

Application of Additive Manufacturing (AM) has significantly increased in the past few years. AM also known as three-dimensional (3D) printing has been currently used in fabrication of prototypes and end-use products. Considering the new applications of additively manufactured components, it is necessary to study structural details of these parts. In the current study, influence of a post-processing on the mechanical properties of 3D-printed parts has been investigated. To this aim, Acrylonitrile Butadiene Styrene (ABS) material was used to produce test coupons based on the Fused Deposition Modeling (FDM) process. More in deep, a device was designed and fabricated to fix imperfection and provide smooth surfaces on the 3D-printed ABS specimens. Later, original and treated specimens were subjected to a series of tensile loads, three-point bending tests, and water absorption tests. The experimental tests indicated fracture load in untreated dog-bone shaped specimen was 2026.1 N which was decreased to 1951.7 N after surface treatment. Moreover, the performed surface treatment was lead and decrease in tensile strength from 29.37 MPa to 26.25 MPa. Comparison of the results confirmed effects of the surface modification on the fracture toughness of the examined semi-circular bending components. Moreover, a 3D laser microscope was used for visual investigation of the specimens. The documented results are beneficial for next designs and optimization of finishing processes.


Sign in / Sign up

Export Citation Format

Share Document